立方对角面开孔人工鱼礁流场效应的数值模拟
CSTR:
作者:
中图分类号:

S 953.1

基金项目:

国家自然科学基金 (52101330);浙江省省属高校基本科研业务费 (2022J004);浙江省自然科学基金 (LQ18E090007,LQ19E090007);浙江省大学生新苗计划 (2020R411053)


Numerical simulation of flow field effect of cube-diagonal hole-opening artificial reefs
Author:
Fund Project:

National Natural Science Foundation of China Youth Project; Zhejiang Provincial Natural Science Foundation; Zhejiang University Student New Seedling Project

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    人工鱼礁是建设现代化海洋牧场的基础设施,为了研究在不同海域流速下,迎流角度对人工鱼礁的影响,实验基于Ansys-Fluent平台,采用RNG $ k - \varepsilon $的湍流模型,进行数值水槽模拟,对结构边长为3 m的立方对角面开孔鱼礁在3种来流速度 (0.5、1.0和1.5 m/s)、4种迎流角度 (0°、15°、30°和45°)下的上升流体积、背涡流体积、阻力、倾覆力矩等水动力特性进行比较分析。结果显示,人工鱼礁内部和周围存在具有显著特征的上升流区域和背涡流区域;流场规模的大小基本不受来流速度的影响;流速是影响立方对角面开孔人工稳定性的主要因素,流速越大,作用在礁体上的阻力和倾覆力矩相应变大,礁体的稳定性越差;迎流角度是影响人工鱼礁流场效应的主要因素,鱼礁的流场效应规模在迎流角度为30°~45°时达到最优,礁体为45°迎流时上升流体积和背涡流体积都达到最大值。利用权重赋值法,引入人工鱼礁建设效果综合评价模型,通过综合评价分析,在不考虑海底底质淤积、风浪等条件下,投放人工鱼礁时宜选取最大流速不超过1 m/s的海域,且迎流角在30°至45°范围内,鱼礁的建设效果最佳。

    Abstract:

    Due to the constraints of land resources and environment and the continuous progress of science and technology, human beings have entered an era of deep exploitation of marine resources and utilization of marine space. With the depletion of offshore fishery resources and the aggravation of marine pollution, the construction of marine ranching has become an important measure to improve marine ecological environment and repair fishery resources. Among them, artificial reefs are the infrastructure of modern marine ranching, and ensuring the normal utility of artificial reefs is the key link of marine ranching construction. In order to study the influence of the upstream inflow angle on artificial reefs at different velocities, in this paper, based on Ansys-Fluent, the RNG k-ε turbulence model is used to conduct numerical flume simulation. The hydrodynamic characteristics of a 3 m cube-diagonal open-hole fish reef under three incoming velocities (0.5, 1.0 and 1.5 m/s) and four attack of angles (0°, 15°, 30° and 45°) were compared and analyzed, including upwelling volume, back eddy volume, resistance and overturning moment. Studies have shown that there are upwelling and back eddy areas with significant characteristics in and around the artificial reef. The scale of the flow field is basically not affected by the flow velocity, while flow velocity is the main factor affecting the stability of cube-diagonal hole-opening reef. The greater the flow velocity, the greater the resistance and overturning moment acting on the reef, and the worse the stability of the reef. The flow field effect of artificial reefs is mainly influenced by the inflow angle. The flow field effect scale of the artificial reefs reaches the optimum when the inflow angle is 30°-45°, and the upwelling volume and back eddy volume reach the maximum when the reef is 45°. The weight assignment method is used to introduce a comprehensive evaluation model for the construction effect of artificial reefs. Through comprehensive evaluation and analysis, the sea area with the maximum flow velocity not exceeding 1 m/s should be selected when placing artificial reefs without considering the conditions of seabed sedimentation, wind and waves, etc. Moreover, the construction effect of the reef is the best when the inflow angle is within the range of 30° to 45°, which can provide a certain theoretical basis for the artificial reef deployments in practical engineering.

    参考文献
    [1] 唐衍力, 龙翔宇, 王欣欣, 等. 中国常用人工鱼礁流场效应的比较分析[J]. 农业工程学报, 2017, 33(8): 97-103
    Tang Y L, Long X Y, Wang X X, et al. Comparative analysis on flow field effect of general artificial reefs in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8): 97-103 (in Chinese)
    [2] Granneman J E, Steele M A. Effects of reef attributes on fish assemblage similarity between artificial and natural reefs[J]. ICES Journal of Marine Science, 2015, 72(8): 2385-2397
    [3] 张硕, 孙满昌, 陈勇. 不同高度混凝土模型礁上升流特性的定量研究[J]. 大连水产学院学报, 2008, 23(5): 353-358
    Zhang S, Sun M C, Chen Y. Quantitative analysis of upwelling current features of a artificial concrete reef with different height[J]. Journal of Dalian Fisheries University, 2008, 23(5): 353-358 (in Chinese)
    [4] 于定勇, 杨远航, 李宇佳. 不同开口比人工鱼礁体水动力特性及礁体稳定性研究[J]. 中国海洋大学学报(自然科学版), 2019, 49(4): 128-136
    Yu D Y, Yang Y H, Li Y J. Research on hydrodynamic characteristics and stability of artificial reefs with different opening ratios[J]. Periodical of Ocean University of China, 2019, 49(4): 128-136 (in Chinese)
    [5] 王佳浩, 刘莉莉, 蔡新晨, 等. 布设间距对多孔方型人工鱼礁流场效应影响的数值模拟研究[J]. 渔业科学进展, 2020, 41(3): 40-48
    Wang J H, Liu L L, Cai X C, et al. Numerical simulation study on influence of disposal space on effects of flow field around porous square artificial reefs[J]. Progress in Fishery Sciences, 2020, 41(3): 40-48 (in Chinese)
    [6] 张世东. 六边形开口方形人工鱼礁水东力性能数值模拟与模型试验研究[D]上海海洋大学, 2020.
    Zhang S D. Numerical simulation and model test study on hydraulic performance of square artificial reef with hexagon opening[D]Shanghai Ocean University, 2020 (in Chinese).
    [7] 许柳雄, 刘健, 张硕, 等. 回字型人工鱼礁礁体设计及其稳定性计算[J]. 武汉理工大学学报, 2010, 32(12): 79-83+94
    Xu L X, Liu J, Zhang S, et al. Research on the design and stability calculation of the artificial hui style reef[J]. Journal of Wuhan University of Technology, 2010, 32(12): 79-83+94 (in Chinese)
    [8] 关长涛, 李梦杰, 郑延璇, 等. 三圆管型人工鱼礁布设间距的数值模拟及物理稳定性研究[J]. 中国海洋大学学报(自然科学版), 2016, 46(9): 9-17
    Guan C T, Li M J, Zheng Y X, et al. Numerical simulation of disposal space and analysis on physical stability of three-tube artificial reefs[J]. Periodical of Ocean University of China, 2016, 46(9): 9-17 (in Chinese)
    [9] 唐衍力, 王磊, 梁振林, 等. 方型人工鱼礁水动力性能试验研究[J]. 中国海洋大学学报(自然科学版), 2007, 37(5): 713-716
    Tang Y L, Wang L, Liang Z L, et al. Test of the hydrodynamic performance of square artificial reefs[J]. Periodical of Ocean University of China, 2007, 37(5): 713-716 (in Chinese)
    [10] 叶功照, 王莹, 陈舜, 等. 南麂列岛海域两种框型人工鱼礁水动力性能试验[J]. 渔业现代化, 2021, 48(1): 25-32
    Ye G Z, Wang Y, Chen S, et al. Experimental study on hydrodynamic performance of two frame-type artificial reefs in Nanji Islands waters[J]. Fishery Modernization, 2021, 48(1): 25-32 (in Chinese)
    [11] 张硕, 张世东, 初文华, 等. 六边形开口方形人工鱼礁水动力性能模型实验[J]. 水产学报, 2020, 44(11): 1903-1912
    Zhang S, Zhang S D, Chu W H, et al. Model experiment of hydrodynamic performance of square artificial reefs with hexagonal openings[J]. Journal of Fisheries of China, 2020, 44(11): 1903-1912 (in Chinese)
    [12] 庞运禧. 人工鱼礁流场效应数值模拟研究[D]. 湛江: 广东海洋大学, 2017.
    Pang Y X. Study on numerical simulation of flow field effect of artificial fish reef [D]. Zhanjiang: Guangdong Ocean University, 2017 (in Chinese).
    [13] 李东, 侯西勇, 唐诚, 等. 人工鱼礁研究现状及未来展望[J]. 海洋科学, 2019, 43(4): 81-87
    Li D, Hou X Y, Tang C, et al. A review on the progress of artificial reef research[J]. Marine Sciences, 2019, 43(4): 81-87 (in Chinese)
    [14] 虞聪达. 舟山渔场人工鱼礁投放海域生态环境前期评估[J]. 水产学报, 2004, 28(3): 316-322
    Yu C D. Previous assessment of ecological environment in the Zhoushan Fishing Ground being put the artificial reef into[J]. Journal of Fisheries of China, 2004, 28(3): 316-322 (in Chinese)
    [15] 许强. 海洋牧场选址问题的研究——以舟山市为例[D]. 上海: 上海海洋大学, 2012.
    Xu Q. Study of site selection of marine ranching—take Zhoushan Islands as an example[D]. Shanghai: Shanghai Ocean University, 2012 (in Chinese).
    [16] 张硕, 张世东, 胡夫祥, 等. 六边形开口方形人工鱼礁阻力系数数值模拟与模型试验比较研究[J]. 中国水产科学, 2020, 27(11): 1350-1359
    Zhang S, Zhang S D, Hu F X, et al. Comparison of a numerical simulation and a test model of a hexagonal and square opening artificial reef[J]. Journal of Fishery Sciences of China, 2020, 27(11): 1350-1359 (in Chinese)
    [17] 李珺, 林军, 章守宇. 方形人工鱼礁通透性及其对礁体周围流场影响的数值实验[J]. 上海海洋大学学报, 2010, 19(6): 836-840
    Li J, Lin J, Zhang S Y. The numerical experiment on the permeability of a cubic artificial reef and the effect on the flow field around the reef[J]. Journal of Shanghai Ocean University, 2010, 19(6): 836-840 (in Chinese)
    [18] 黄远东, 付登枫, 何文荣. 人工鱼礁开口比对流场效应影响的三维数值模拟研究[J]. 水资源与水工程学报, 2014, 25(4): 39-43
    Huang Y D, Fu D F, He W R. Three-dimensional numerical simulation on influence of cut-opening ratio of artificial reef on flow effect[J]. Journal of Water Resources and Water Engineering, 2014, 25(4): 39-43 (in Chinese)
    [19] 兰孝政, 万荣, 唐衍力, 等. 圆台型人工鱼礁单体流场效应的数值模拟[J]. 中国海洋大学学报(自然科学版), 2016, 46(8): 47-53
    Lan X Z, Wan R, Tang Y L, et al. Numerical simulation of the flow field around the truncated-cone shaped artificial reef[J]. Periodical of Ocean University of China, 2016, 46(8): 47-53 (in Chinese)
    [20] 公丕海, 郑延璇, 李娇, 等. 塔型桁架人工鱼礁流场效应及稳定性[J]. 中国水产科学, 2019, 26(5): 1021-1028
    Gong P H, Zheng Y X, Li J, et al. Flow field effect and stability of the equilateral tower-type truss artificial reef[J]. Journal of Fishery Sciences of China, 2019, 26(5): 1021-1028 (in Chinese)
    [21] 符小明. 人工鱼礁修复海洋生态系统的效果评价——以海州湾为例[D]. 上海: 上海海洋大学, 2016.
    Fu X M. Evaluate the effectiveness of marine ecological rehabilitation using artificial reef—a case study of Haizhou Bay[D]. Shanghai: Shanghai Ocean University, 2016 (in Chinese).
    [22] 刘心媚, 郑艳娜, 陈昌平, 等. 框架型与沉箱型人工鱼礁绕流特性的数值模拟[J]. 大连海洋大学学报, 2019, 34(1): 133-138
    Liu X M, Zheng Y N, Chen C P, et al. Numerical simulation of flow around frame and caisson artificial reef models[J]. Journal of Dalian Fisheries University, 2019, 34(1): 133-138 (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

薛大文,庞聪利,潘昀.立方对角面开孔人工鱼礁流场效应的数值模拟[J].水产学报,2024,48(3):039518

复制
分享
文章指标
  • 点击次数:383
  • 下载次数: 932
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-09-07
  • 最后修改日期:2021-12-02
  • 录用日期:2022-02-18
  • 在线发布日期: 2024-03-19
文章二维码