鱼贝类肌肉品质变化与能量代谢关联
CSTR:
作者:
中图分类号:

TS 254.4

基金项目:

国家重点研发计划 (2018YFD0901001);国家自然科学基金 (31671790)


Relationship between muscle quality changes and energy metabolism in fish and shellfish
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [75]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    水产养殖是满足人们对蛋白质需求的重要途径,减少鱼贝类捕后因鲜度下降导致的资源浪费是水产品加工领域的重要研究课题之一。横纹肌作为鱼贝类肌肉中主要的食用部位,其品质变化与肌肉能量代谢状况密不可分。本文详细综述了ATP在线粒体、肌质网和肌原纤维蛋白间的产生、转运和消耗的过程。回顾了基于横纹肌能量代谢过程所提出的一系列鱼贝类肌肉鲜度评价指标,包括ATP及其关联化合物相关的K值、Kmax值、AEC值,以及肌原纤维蛋白和肌质网的ATPase活性、线粒体结构和呼吸活性等。进一步根据消费现状综述了各鲜度指标在鱼类鲜品和贝类活品中的适用性,提出加强鱼贝类捕后初期 (品质易逝期)控制的必要性和紧迫性。在众多指标中,线粒体活性可作为易逝期品质控制的有效指标,可有效开展易逝期的品质评价,减少因捕后处置不当造成的品质损失和资源浪费。

    Abstract:

    Aquaculture is an important way to meet people's demand for protein in the future. Reducing the decline in the quality of post-harvested fish and shellfish is an important topic in the field of aquatic product processing. Striated muscle is the main edible part in the muscle of fish and shellfish, and its energy metabolism state affects muscle quality. This article reviews the energy metabolism of striated muscles, including the production, transport and consumption of ATP. A series of muscle freshness evaluation indexes proposed based on the energy metabolism process of striated muscle were reviewed,including K value, Kmax value and AEC value of ATP and its related compounds, as well as the ATPase activity, mitochondrial structure and respiratory activity of myogenic fibronectin and sarcoplasmic reticulum. The applicability of each freshness index in iced fish and live shellfish was further summarized according to the consumption status, and the necessity and urgency of strengthening the control of fish and shellfish in the early of post-harvest stage (quality determination period) were put forward. Among many indicators, mitochondrial activity can be used as an effective indicator for quality control in the quality determination period, facilitate effective carry out quality evaluation in the perishable period, and reduce quality loss and resource consumption caused by improper post-harvested disposal. And provide a theoretical support for promoting that sustainable development of the aquatic product industry.

    参考文献
    [1] Kampers F W H, Fresco L O. Food transitions 2030: how to achieve the transitions to a sustainable, affordable, trustworthy and high-quality food system in the next decade or two that will fulfil the needs of a diverse and growing world population[M]. Wageningen: Wageningen University & Research, 2017.
    [2] 杨云, 袁子勇, 韩奇鹏. 浅谈人畜共患疾病及其防控措施[J]. 饲料博览, 2020(3): 47-50
    Yang Y, Yuan Z Y, Han Q P. Discuss on zoonotic diseases and prevention and control measures[J]. Feed Review, 2020(3): 47-50 (in Chinese)
    [3] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020.
    National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistics Press, 2020 (in Chinese).
    [4] 林利民, 陈武. 5种海水养殖鱼类肌肉脂肪酸组成分析及营养评价[J]. 福建农业学报, 2005, 20(S1): 67-69
    Lin L M, Chen W. Fatty acid composition and nutrition evaluation in muscle of five cultured marine fish[J]. Fujian Journal of Agricultural Sciences, 2005, 20(S1): 67-69 (in Chinese)
    [5] Sobczak M, Panicz R, Eljasik P, et al. Quality improvement of common carp (Cyprinus carpio L. ) meat fortified with N-3 PUFA[J]. Food and Chemical Toxicology, 2020, 139: 111261
    [6] Nations F A A O. The state of world fisheries and aquaculture in 2018-achieving sustainable development goals[M]. Roman, 2018.
    [7] Huang Z H, Ma A J, Wang X A, et al. The interaction of temperature, salinity and body weight on growth rate and feed conversion rate in turbot (Scophthalmus maximus)[J]. Aquaculture, 2014, 432: 237-242
    [8] Toldrá F. Lawrie's meat science[M]. Wood Head Publishing, Cambridge: 2006.
    [9] Goll D E, Otsuka Y, Nagainis P A, et al. Role of muscle proteinases in maintenance of muscle integrity and mass[J]. Journal of Food Biochemistry, 1983, 7(3): 137-177
    [10] Varikmaa M, Guzun R, Grichine A, et al. Matters of the heart in bioenergetics: mitochondrial fusion into continuous reticulum is not needed for maximal respiratory activity[J]. Journal of Bioenergetics and Biomembranes, 2013, 45(4): 319-331
    [11] Alam M T, Manjeri G R, Rodenburg R J, et al. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2015, 1847(6-7): 526-533
    [12] Chen W W, Freinkman E, Wang T, et al. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism[J]. Cell, 2016, 166(5): 1324-1337.e11
    [13] Brand M D. The proton leak across the mitochondrial inner membrane[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1990, 1018(2-3): 128-133
    [14] Kori Y, Sidoli S, Yuan Z F, et al. Proteome-wide acetylation dynamics in human cells[J]. Scientific Reports, 2017, 7(1): 10296
    [15] Grieshaber M K, Hardewig I, Kreutzer U, et al. Physiological and metabolic responses to hypoxia in invertebrates[J]. Reviews of Physiology, Biochemistry and Pharmacology, 1994, 125: 43-147
    [16] Williamson J R, Ford C, Illingworth J, et al. Coordination of citric acid cycle activity with electron transport flux[J]. Circulation Research, 1976, 38(5S): I39-I51
    [17] Saks V A, Kaambre T, Sikk P, et al. Intracellular energetic units in red muscle cells[J]. Biochemical Journal, 2001, 356(2): 643-657.
    [18] Andrienko T, Kuznetsov A V, Kaambre T, et al. Metabolic consequences of functional complexes of mitochondria, myofibrils and sarcoplasmic reticulum in muscle cells[J]. Journal of Experimental Biology, 2003, 206(Pt 12): 2059-2072.
    [19] Boncompagni S, Rossi A E, Micaroni M, et al. Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures[J]. Molecular Biology of the Cell, 2009, 20(3): 1058-1067
    [20] Dirksen R T. Sarcoplasmic reticulum–mitochondrial through-space coupling in skeletal muscle[J]. Applied Physiology, Nutrition, and Metabolism, 2009, 34(3): 389-395
    [21] England W R, Baldwin J. Anaerobic energy metabolism in the tail musculature of the australian yabby Cherax destructor (Crustacea, Decapoda, Parastacidae) regulation of anaerobic glycolysis[J]. Comparative Biochemistry and Physiology-Part B: Comparative Biochemistry, 1985, 80(2): 327-335
    [22] Grieshaber M. Breakdown and formation of high-energy phosphates and octopine in the adductor muscle of the scallop, Chlamys opercularis (L. ), during escape swimming and recovery[J]. Journal of Comparative Physiology, 1978, 126(3): 269-276
    [23] Atkinson D E. The energy charge of the adenylate pool as a regulatory parameter. interaction with feedback modifiers[J]. Biochemistry, 1968, 7(11): 4030-4034
    [24] 李亚烜, 闫丽新, 于笛, 等. 不同规格虾夷扇贝捕后耐干露特性比较[J]. 水产科学, 2019, 38(4): 443-450
    Li Y X, Yan L X, Yu D, et al. Comparison of air exposure stress resistances of post-harvested yesso scallop with different sizes[J]. Fisheries Science, 2019, 38(4): 443-450 (in Chinese)
    [25] Moal J, Le Coz J R, Samain J F, et al. Oyster adenylate energy charge: response to levels of food[J]. Aquatic Living Resources, 1991, 4(2): 133-138
    [26] Hamada-Sato N, Usui K, Kobayashi T, et al. Quality assurance of raw fish based on HACCP concept[J]. Food Control, 2005, 16(4): 301-307
    [27] Kuda T, Fujita M, Goto H, et al. Effects of retort conditions on ATP-related compounds in pouched fish muscle[J]. LWT-Food Science and Technology, 2008, 41(3): 469-473
    [28] Saito T, Arai K I, Matsuyoshi M. A new method for estimating the freshness of fish[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1959, 24(9): 749-750
    [29] Saito T, Arai K I, Yajima T. Studies on the organic phosphates in muscle of aquatic animals-Ⅶ: changes in purine nucleotides of red lateral muscle of fish[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1959, 25(7-9): 573-575
    [30] Satomi K, Seiichi K, Noboru K, et al. Rigor mortis of fish and shellfish and evaluation of freshness of their muscles as K value[J]. Journal of the College of Marine Science & Technology Tokai University, 2006, 4(5): 31-46
    [31] Wei H M, Tian Y Y, Lin Y M, et al. Condition‐dependent adenosine monophosphate decomposition pathways in striated adductor muscle from Japanese scallop (Patinopecten yessoensis)[J]. Journal of Food Science, 2020, 85(5): 1462-1469
    [32] Karube I, Matsuoka H, Suzuki S, et al. Determination of fish freshness with an enzyme sensor system[J]. Journal of Agricultural and Food Chemistry, 1984, 32(2): 314-319.
    [33] Kawashima K, Yamanaka H. Effects of chloramphenicol on post-mortem biochemical changes in scallop adductor muscle[J]. Fisheries, 1994, 60(4): 461-465
    [34] Yokoyama Y, Sakaguchi M, Kawai F, et al. Chemical indices for assessing freshness of shellfish during storage[J]. Fisheries Science, 1994, 60(3): 329-333
    [35] Rebello C A, Ludescher R D. Differential dynamic behavior of actin filaments containing tightly-bound Ca2+ or Mg2+ in the presence of myosin heads actively hydrolyzing ATP[J]. Biochemistry, 1999, 38(40): 13288-13295
    [36] Watabe S, Ushio H, Iwamoto M, et al. Temperature-dependency of rigor-mortis of fish muscle: myofibrillar Mg2+-ATPase activity and Ca2+ uptake by sarcoplasmic reticulum[J]. Journal of Food Science, 1989, 54(5): 1107-1110
    [37] Godiksen H, Hyldig G, Jessen R. Sarcoplasmic reticulum Ca2+‐ATPase and cytochrome oxidase as indicators of frozen storage in cod (Gadus morhua)[J]. Journal of Food Science, 2003, 68(8): 2579-2585
    [38] Satoh A, Kinoshita Y, Konno K, et al. Myosin denaturation in heated myofibrils of scallop adductor muscle[J]. Fisheries Science, 2013, 79(1): 149-155
    [39] Hayashi K, Konno K. Stabilization of myosin by ionic compounds as affected by F-actin[J]. Fisheries Science, 2006, 72(6): 1306-1312
    [40] Watabe S, Hwang G C, Ushio H, et al. Short thermal treatment effect on carp myofibril and sarcoplasmic reticulum: possible mechanisms in rigor mortis acceleration by "Arai" treatment[J]. Journal of Food Science, 1991, 56(3): 653-656
    [41] Yuan C H, Takeda Y, Nishida W, et al. Suppressive effect of ATP on the denaturation of sarcoplasmic reticulum Ca2+-ATPase from southern bluefin tuna Thunnus maccoyii and its Biochemical Properties[J]. Fisheries Science, 2016, 82(1): 147-153
    [42] Cléach J, Pasdois P, Marchetti P, et al. Mitochondrial activity as an indicator of fish freshness[J]. Food Chemistry, 2019, 287: 38-45
    [43] Ayala M D, Abdel I, Santaella M, et al. Muscle tissue structural changes and texture development in sea bream, Sparus aurata L., during post-mortem storage[J]. LWT-Food Science and Technology, 2010, 43(3): 465-475
    [44] 冷寒冰, 刘俊荣, 衣鸿莉, 等. 红鳍东方鲀易逝期锁鲜处置对冰藏品质的延迟效应[J]. 水产学报, 2021, 45(6): 958-970
    Leng H B, Liu J R, Yi H L, et al. Effects of freshness-locked performance during the quality determination period on the iced Takifugu rubripes freshness quality[J]. Journal of Fisheries of China, 2021, 45(6): 958-970 (in Chinese)
    [45] Haider F, Falfushynska H, Ivanina A V, et al. Effects of pH and bicarbonate on mitochondrial functions of marine bivalves[J]. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 2016, 198: 41-50
    [46] Ivanina A V, Nesmelova I, Leamy L, et al. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs[J]. Journal of Experimental Biology, 2016, 219(11): 1659-1674
    [47] Smiley S T, Reers M, Mottola-Hartshorn C, et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1[J]. Proceedings of the National Academy of Sciences of the National Academy of Sciences, 1991, 88(9): 3671-3675
    [48] Cossarizza A, Baccaranicontri M, Kalashnikova G, et al. A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1)[J]. Biochemical and Biophysical Research Communications, 1993, 197(1): 40-45
    [49] Labajova A, Vojtiskova A, Krivakova P, et al. Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode[J]. Analytical Biochemistry, 2006, 353(1): 37-42
    [50] Paradies G, Ruggiero F M, Petrosillo G, et al. Enhanced cytochrome oxidase activity and modification of lipids in heart mitochondria from hyperthyroid rats[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1994, 1225(2): 165-170
    [51] Daskalova A. Farmed fish welfare: stress, post-mortem muscle metabolism, and stress-related meat quality changes[J]. International Aquatic Research, 2019, 11(2): 113-124
    [52] Ashley P J. Fish welfare: current issues in aquaculture[J]. Applied Animal Behaviour Science, 2007, 104(3-4): 199-235
    [53] EFSA. Scientific opinion of the panel on animal health and welfare on a request from European commission on the overall effects of farming systems on dairy cow welfare and disease[J]. The EFSA Journal, 2009, 1143: 1-38
    [54] 衣鸿莉, 刘俊荣, 王选飞, 等. 养殖大菱鲆死前应激状态对肌肉代谢与品质的影响[J]. 大连海洋大学学报, 2020, 35(4): 570-576
    Yi H L, Liu J R, Wang X F, et al. Effects of pre-slaughter stress on muscular metabolism and quality of farmed turbot Scophthalmus maximus[J]. Journal of Dalian Fisheries University, 2020, 35(4): 570-576 (in Chinese)
    [55] 冷寒冰, 刘俊荣, 徐美禄, 等. 红鳍东方鲀死后僵直及生化变化特性[J]. 水产学报, 2020, 44(1): 156-165
    Leng H B, Liu J R, Xu M L, et al. Postmorten biochemistry and Rigor development of pufferfish (Takifugu rubripes)[J]. Journal of Fisheries of China, 2020, 44(1): 156-165 (in Chinese)
    [56] Lerfall J, Roth B, Skare E F, et al. Pre-mortem stress and the subsequent effect on flesh quality of pre-rigor filleted Atlantic salmon (Salmo salar L. ) during ice storage[J]. Food Chemistry, 2015, 175: 157-165
    [57] Gaarder M Ø, Bahuaud D, Veiseth-Kent E, et al. Relevance of calpain and calpastatin activity for texture in super-chilled and ice-stored Atlantic salmon (Salmo salar L. ) fillets[J]. Food Chemistry, 2012, 132(1): 9-17
    [58] Benjakul S, Seymour T A, Morrissey M T, et al. Physicochemical changes in Pacific whiting muscle proteins during iced storage[J]. Journal of Food Science, 1997, 62(4): 729-733
    [59] Parlapani F F, Mallouchos A, Haroutounian S A, et al. Microbiological spoilage and investigation of volatile profile during storage of sea bream fillets under various conditions[J]. International Journal of Food Microbiology, 2014, 189: 153-163
    [60] Woll A K, Bakke S. Stress and mortality in the supply chain of live scallops Pecten maximus L., from scuba diver to market[J]. Aquaculture Research, 2017, 48(2): 594-607
    [61] 李亚烜, 刘俊荣, 刘洋, 等. 易逝期胁迫强度对虾夷扇贝活力可恢复性的影响[J]. 大连海洋大学学报, 2020, 35(5): 733-740
    Li Y X, Liu J R, Liu Y, et al. Re-immersion physiologic recovery of yesso scallop following different stress treatments in the quality determined period[J]. Journal of Dalian Fisheries University, 2020, 35(5): 733-740 (in Chinese)
    [62] 刘金洋, 刘俊荣, 田元勇, 等. 捕后处置对活品底播虾夷扇贝生化代谢的影响[J]. 水产学报, 2017, 41(1): 81-87
    Liu J Y, Liu J R, Tian Y Y, et al. Effects of post-harvest handling on biochemical metabolism of bottom cultured live scallop (Patinopecten yessoensis)[J]. Journal of Fisheries of China, 2017, 41(1): 81-87 (in Chinese)
    [63] 刘慧慧, 周晏琳, 张晴, 等. 菲律宾蛤仔捕后干露处置对其复水湿藏稳定性的影响[J]. 大连海洋大学学报, 2018, 33(2): 244-250
    Liu H H, Zhou Y L, Zhang Q, et al. Effect of air exposure on biochemical metabolism of harvested Manila clam Ruditapes philippinarum during live wet storage[J]. Journal of Dalian Ocean University, 2018, 33(2): 244-250 (in Chinese)
    [64] 刘慧慧, 刘俊荣, 田元勇, 等. 菲律宾蛤仔的干湿藏保活特性初探[J]. 水产科学, 2017, 36(3): 267-273
    Liu H H, Liu J R, Tian Y Y, et al. Comparison of manila clam Ruditapes philippinarum between air exposured storage and wet storage[J]. Fisheries Science, 2017, 36(3): 267-273 (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

殷中专,田元勇,徐昙烨,袁春红,刘俊荣.鱼贝类肌肉品质变化与能量代谢关联[J].水产学报,2022,46(7):1143~1153

复制
分享
文章指标
  • 点击次数:1453
  • 下载次数: 1649
  • HTML阅读次数: 390
  • 引用次数: 0
历史
  • 收稿日期:2021-03-30
  • 最后修改日期:2021-08-17
  • 在线发布日期: 2022-07-02
文章二维码