肌醇对嗜水气单胞菌致生长期草鱼头肾和脾脏氧化损伤的保护作用
CSTR:
作者:
基金项目:

国家现代农业产业技术体系专项(CARS-45);农业科研杰出人才及其创新团队;四川省青年科技创新团队(2017TD0002);国家自然科学基金(31972810)


Protective effect of myo-inositol on oxidative damage of head kidney and spleen in juvenile grass carp (Ctenopharyngodon idella) induced by Aeromonas hydrophila
Author:
  • HU Kai

    HU Kai

    Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China;Department of Animal and Veterinary Science, Chengdu Agricultural College, Chengdu 611130, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Shuang’an

    LI Shuang’an

    Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FENG Lin

    FENG Lin

    Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China;Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIANG Weidan

    JIANG Weidan

    Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China;Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Pei

    WU Pei

    Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China;Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Yang

    LIU Yang

    Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China;Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIANG Jun

    JIANG Jun

    Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China;Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • KUANG Shengyao

    KUANG Shengyao

    Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610099, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TANG Ling

    TANG Ling

    Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610099, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Xiaoqiu

    ZHOU Xiaoqiu

    Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China;Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本实验探索了肌醇对嗜水气单胞菌致生长期草鱼头肾和脾脏氧化损伤的保护作用。实验选取平均体质量(221.83±0.84) g的草鱼540尾,随机分为6组,每组3个重复,分别饲喂含不同水平肌醇[27.0(基础饲料组,未添加肌醇)、137.9、286.8、438.6、587.7和737.3 mg/kg]的饲料10周。随后经腹腔注射嗜水气单胞菌进行14 d攻毒实验。结果显示,嗜水气单胞菌注射后,与基础饲料(未添加肌醇)组相比,饲料中适宜水平肌醇组生长期草鱼头肾和脾脏活性氧(ROS)、丙二醛(MDA)和蛋白质羰基(PC)含量显著降低,而超氧化物歧化酶(SOD/CuZn-SOD和MnSOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPx/GPx1a、GPx1b、GPx4a和GPx4b)、谷胱甘肽S-转移酶(GST/GSTP1、GSTP2、GSTO1和GSTO2)和谷胱甘肽还原酶(GR)活性及mRNA水平,谷胱甘肽(GSH)含量显著提高。此外,饲料中适宜水平肌醇上调了嗜水气单胞菌注射后生长期草鱼头肾和脾脏核因子E2相关因子2(Nrf2)mRNA和蛋白水平,下调了Kelch样环氧氯丙烷相关蛋白1(Keap1)a和b mRNA水平。研究表明,饲料中适宜水平肌醇可激活鱼类头肾和脾脏Nrf2信号途径,提高其抗氧化能力,增强抵抗嗜水气单胞菌致头肾和脾脏氧化损伤的能力。此外,以嗜水气单胞菌注射后生长期草鱼头肾和脾脏ROS含量为标识,生长期草鱼肌醇需要量分别为452.1和449.0 mg/kg。

    Abstract:

    This study investigated the protective effect of myo-inositol on oxidative damage of head kidney and spleen in juvenile grass carp (Ctenopharyngodon idella) induced by Aeromonas hydrophila. A total of 540 C. idella [(221.83±0.84) g] were fed six diets with graded levels of myo-inositol [27.0(unsupplemented), 137.9, 286.8, 438.6, 587.7, 737.3 mg/kg] for 10 weeks. Subsequently, a challenge test was conducted by injection of A. hydrophila and the survival rates recorded for 14 days. The results indicated that compared with myo-inositol deficiency (basal diet, unsupplemented), optimal myo-inositol supplementation decreased reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl contents, and increased the activities and mRNA levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferased and glutathione reductase, and contents of glutathione in the head kidney and spleen after injection of A. hydrophila. Meanwhile, compared with myo-inositol deficiency (basal diet, unsupplemented), optimal myo-inositol supplementation up-regulated NF-E2-related factor 2 (Nrf2) mRNA and protein levels, and down-regulated Kelch-like ECH-associated protein-1 (Keap1) a and b mRNA levels in the head kidney and spleen after injection of A. hydrophila. These results suggested that optimal myo-inositol supplementation could protect fish head kidney and spleen structural integrity through increased antioxidative ability after injection of A. hydrophila. Finally, based on the antioxidant indices ROS content in the head kidney and spleen after injection of A. hydrophila, the myo-inositol requirement for juvenile C. idella was estimated to be 452.1 and 449.0 mg/kg diet, respectively.

    参考文献
    [1] Wang Y, Zhou X, Jiang W, et al. Effects of dietary zearalenone on oxidative stress, cell apoptosis, and tight junction in the intestine of juvenile grass carp (Ctenopharyngodon idella)[J]. Toxins, 2019, 11(6):333
    [2] Zeng Z, Jiang W, Wu P, et al. Dietary aflatoxin B1 decreases growth performance and damages the structural integrity of immune organs in juvenile grass carp (Ctenopharyngodon idella)[J]. Aquaculture, 2019, 500:1-17
    [3] Zheng L, Jiang W, Feng L, et al. Selenium deficiency impaired structural integrity of the head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2018, 82:408-420
    [4] Løvoll M, Kilvik T, Boshra H, et al. Maternal transfer of complement components C3-1, C3-3, C3-4, C4, C5, C7, Bf, and Df to offspring in rainbow trout (Oncorhynchus mykiss)[J]. Immunogenetics, 2006, 58(2-3):168-179
    [5] 陆承平. 致病性嗜水气单胞菌及其所致鱼病综述[J]. 水产学报, 1992, 16(3):282-288 Lu C P. Pathogenic Aerqmqnas hydrophila and the fish diseases caused by it[J]. Journal of Fisheries of China, 1992, 16(3):282-288(in Chinese)
    [6] 蒋自立, 李春涛. 黄颡鱼嗜水气单胞菌对草鱼幼鱼肝·肾和脾的影响[J]. 安徽农业科学, 2012, 40(10):5946-5949 Jiang Z L, Li C T. Effect of Aeromonas hydrophila isolated from Pelteobagrus fulvidraco on liver, kidney, and spleen of juvenile grass carp[J]. Journal of Anhui Agricultural Sciences, 2012, 40(10):5946-5949(in Chinese)
    [7] Baldissera M D, Souza C F, Júnior G B, et al. Melaleuca alternifolia essential oil enhances the non-specific immune system and prevents oxidative damage in Rhamdia quelen experimentally infected by Aeromonas hydrophila:effects on cholinergic and purinergic systems in liver tissue[J]. Fish & Shellfish Immunology, 2017, 61:1-8
    [8] 明建华, 谢骏, 徐跑, 等. 大黄素、维生素c及其配伍对团头鲂生长、生理生化指标、抗病原感染以及两种HSP70s mRNA表达的影响[J]. 水产学报, 2010, 34(9):1447-1459 Ming J H, Xie J, Xu P, et al. Effects of emodin, vitamin C and their combination on growth, physiological and biochemical parameters, disease resistance and two HSP70s mRNA expression of Wuchang bream (Megalobrama amblycephala)[J]. Journal of Fisheries of China, 2010, 34(9):1447-1459(in Chinese)
    [9] Kuang S Y, Xiao W W, Feng L, et al. Effects of graded levels of dietary methionine hydroxy analogue on immune response and antioxidant status of immune organs in juvenile Jian carp (Cyprinus carpio var. jian)[J]. Fish Shellfish Immunol, 2012, 32(5):629-636
    [10] Birben E, Sahiner U M, Sackesen C, et al. Oxidative stress and antioxidant defense[J]. World Allergy Organization Journal, 2012, 5(1):9-19
    [11] Shiau S Y, Su S L. Juvenile tilapia (Oreochromis niloticus×Oreochromis aureus) requires dietary myo-inositol for maximal growth[J]. Aquaculture, 2005, 243(1):273-277
    [12] Jiang W D, Feng L, Liu Y, et al. Growth, digestive capacity and intestinal microflora of juvenile Jian carp (Cyprinus carpio var. jian) fed graded levels of dietary inositol[J]. Aquaculture Research, 2009, 40(8):955-962
    [13] Li S, Jiang W, Feng L, et al. Dietary myo-inositol deficiency decreased the growth performances and impaired intestinal physical barrier function partly relating to nrf2, jnk, e2f4 and mlck signaling in young grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2017, 67:475-492
    [14] Gong W, Lei W, Zhu X, et al. Dietary myo-inositol requirement for juvenile gibel carp (Carassius auratus gibelio)[J]. Aquaculture Nutrition, 2015, 20(5):514-519
    [15] 乔芳, 李欢, 李东亮, 等. 冬夏两季五种经济鱼类组织脂肪酸含量及组成分析[J]. 水产学报, 2018, 42(1):80-90 Qiao F, Li H, Li D L, et al. Comparative analysis of fatty acid profiles in different tissues of five economic fish species in winter and summer[J]. Journal of Fisheries of China, 2018, 42(1):80-90(in Chinese)
    [16] Clements R S J, Darnell B. Myo-inositol content of common foods:Development of a high-myo-inositol diet[J]. American Journal of Clinical Nutrition, 1980, 33(9):1954-1967
    [17] Zeng Y Y, Jiang W D, Liu Y, et al. Optimal dietary alpha-linolenic acid/linoleic acid ratio improved digestive and absorptive capacities and target of rapamycin gene expression of juvenile grass carp (Ctenopharyngodon idellus)[J]. Aquaculture Nutrition, 2016, 22(6):1251-1266
    [18] Nrc N R C. Nutrient requirments of fish and shrimp[M]. Washington, D. C.:The National Academies Press, 2011.
    [19] Wen J, Jiang W, Feng L, et al. The influence of graded levels of available phosphorus on growth performance, muscle antioxidant and flesh quality of young grass carp (Ctenopharyngodon idella)[J]. Animal Nutrition, 2015, 1(2):77-84
    [20] Zhou Q, Wang L, Wang H, et al. Effect of dietary vitamin C on the growth performance and innate immunity of juvenile cobia (Rachycentron canadum)[J]. Fish & Shellfish Immunology, 2012, 32(6):969-975
    [21] Li S, Jiang W, Feng L, et al. Dietary myo-inositol deficiency decreased intestinal immune function related to NF-κB and TOR signaling in the intestine of young grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2018, 76:333-346
    [22] Tian L, Zhou X Q, Jiang W D, et al. Sodium butyrate improved intestinal immune function associated with NF-κB and p38MAPK signalling pathways in young grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2017, 66:548
    [23] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408
    [24] Grove S, Johansen R, Reitan L, et al. Immune-and enzyme histochemical characterisation of leukocyte populations within lymphoid and mucosal tissues of Atlantic halibut (Hippoglossus hippoglossus)[J]. Fish & Shellfish Immunology, 2006, 20(5):693-708
    [25] Xu H, Jiang W, Feng L, et al. Dietary vitamin C deficiency depresses the growth, head kidney and spleen immunity and structural integrity by regulating NF-κB, TOR, Nrf2, apoptosis and MLCK signaling in young grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2016, 52:111-138
    [26] Ni P, Jiang W, Wu P, et al. Dietary low or excess levels of lipids reduced growth performance, and impaired immune function and structure of head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella) under the infection of Aeromonas hydrophila[J]. Fish & Shellfish Immunology, 2016, 55:28-47
    [27] Jiang W, Hu K, Liu Y, et al. Dietary myo-inositol modulates immunity through antioxidant activity and the Nrf2 and E2F4/cyclin signalling factors in the head kidney and spleen following infection of juvenile fish with Aeromonas hydrophila[J]. Fish & Shellfish Immunology, 2016, 49:374-386
    [28] Ferro D, Franchi N, Mangano V, et al. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis[J]. Aquatic Toxicology, 2013, 140(18):369-379
    [29] Lyu K, Zhu X, Chen R, et al. Molecular cloning of manganese superoxide dismutase gene in the cladoceran Daphnia magna:effects of microcystin, nitrite, and cadmium on gene expression profiles[J]. Aquatic Toxicology, 2014, 148(3):55-64
    [30] 郑清梅, 温小波, 韩春艳, 等. 草鱼胞浆谷胱甘肽过氧化物酶cDNA全长的克隆与分析[J]. 基因组学与应用生物学, 2010, 29(5):919-926 Zheng Q M, Wen X B, Han C Y, et al. Full-length cDNA cloning and analysis of glutathione peroxidase from grass carp (Ctenopharyngodon idellus)[J]. Genomics and Applied Biology, 2010, 29(5):919-926(in Chinese)
    [31] 郑清梅, 韩春艳, 温茹淑, 等. 草鱼过氧化氢酶全长cDNA的克隆、序列同源分析与组织表达[J]. 基因组学与应用生物学, 2011, 30(5):529-538 Zheng Q M, Han C Y, Wen R S, et al. Full-length cDNA cloning, sequence homology analysis and tissue expression of a catalase gene from grass carp (Ctenopharyngodon idellus)[J]. Genomics and Applied Biology, 2011, 30(5):529-538(in Chinese)
    [32] 严林飞, 安昕, 包苗苗, 等. 大黄鱼过氧化氢酶基因的克隆及其对鳗弧菌感染的响应[J]. 水产学报, 2017, 41(5):641-648 Yan L F, An X, Bao M M, et al. Expression of catalase in Larimichthys crocea after infection of Vibrio anguillarum[J]. Journal of Fisheries of China, 2017, 41(5):641-648(in Chinese)
    [33] Hermesz E, Ferencz Á. Identification of two phospholipid hydroperoxide glutathione peroxidase (gpx4) genes in common carp[J]. Comparative Biochemistry and Physiology-Part C:Toxicology & Pharmacology, 2009, 150(1):101-106
    [34] Liang Q, Sheng Y, Jiang P, et al. The gender-dependent difference of liver GSH antioxidant system in mice and its influence on isoline-induced liver injury[J]. Toxicology, 2011, 280(1):61-69
    [35] Tierbach A, Groh K J, Schonenberger R, et al. Glutathione S-Transferase protein expression in different life stages of zebrafish (Danio rerio)[J]. Toxicol Sci, 2018, 162(2):702-712
    [36] Schmidt M M, Dringen R. Glutathione (GSH) synthesis and metabolism[J]. Advances in Neurobiology, 2012, 36:1029-1050
    [37] Thompson J L, See V H L, Thomas P M, et al. Cloning and characterization of two glutathione peroxidase cDNAs from southern bluefin tuna (Thunnus maccoyii)[J]. Comparative Biochemistry and Physiology-Part B:Biochemistry and Molecular Biology, 2010, 156(4):287-297
    [38] Zhao W, Zhong X, Zhou L. Expression of PHGPx in mammalian cells and its antiviral effect against coxsackievirus group B[J]. Progress in Natural Science:Materials International, 2005, 15(7):665-668
    [39] Tian R, Seim I, Ren W, et al. Contraction of the ROS scavenging enzyme glutathione S-Transferase gene family in cetaceans[J]. G3(Bethesda), 2019, 9(7):2303-2315
    [40] Li L, Liang X, He S, et al. Transcriptional responses of mu-, pi-and omega-class glutathione S-transferase genes in the hepatopancreas of Cipangopaludina cahayensis exposed to microcystin-LR[J]. Chinese Science Bulletin, 2014, 59(25):3153-3161
    [41] Dasari S, Gonuguntla S, Ganjayi M S, et al. Genetic polymorphism of glutathione S-transferases:relevance to neurological disorders[J]. Pathophysiology, 2018, 25(4):285-292
    [42] Raza H. Dual localization of glutathione S-transferase in the cytosol and mitochondria:Implications in oxidative stress, toxicity and disease[J]. Febs J, 2011, 278(22):4243-4251
    [43] Jain A K, Bloom D A, Jaiswal A K. Nuclear import and export signals in control of Nrf2[J]. Journal of Biological Chemistry, 2005, 280(32):29158-29168
    [44] Mcmahon M, Thomas N K, Yamamoto M, et al. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron[J]. Journal of Biological Chemistry, 2004, 279(30):31556-31567
    [45] Li L, Makoto K, Hiroshi K, et al. Molecular evolution of Keap1. Two Keap1 molecules with distinctive intervening region structures are conserved among fish[J]. Journal of Biological Chemistry, 2007, 283(6):3248-3255
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡凯,李双安,冯琳,姜维丹,吴培,刘杨,姜俊,邝声耀,唐凌,周小秋.肌醇对嗜水气单胞菌致生长期草鱼头肾和脾脏氧化损伤的保护作用[J].水产学报,2019,43(10):2256~2267

复制
分享
文章指标
  • 点击次数:965
  • 下载次数: 1403
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-08-31
  • 最后修改日期:2019-09-27
  • 录用日期:2019-10-02
  • 在线发布日期: 2019-10-29
文章二维码