高通量测序法分析两株益生菌对凡纳滨对虾肠道菌群结构的影响
CSTR:
作者:
作者单位:

天津师范大学生命科学学院,天津师范大学生命科学学院,天津师范大学生命科学学院,天津师范大学生命科学学院,天津师范大学生命科学学院

基金项目:

国家自然科学基金(31472299);天津市自然科学基金(15JCZDJC33800);天津市人才发展特殊支持计划高层次创新创业团队项目(ITTFRS2017007);天津市高等学校创新团队建设规划(TD13-5076);国家“八六三”高技术研究发展计划(2012AA092205,2012AA10A401);国家“九七三”重点基础研究项目(2012CB114405)


Analysis of the characteristics of Litopenaeus vannamei intestinal microflora after being fed with two probiotics using high-throughput sequencing method
Author:
Affiliation:

Tianjin Key Laboratory of Animal and Plant Resistance,College of Life Science,Tianjin Normal University,Tianjin Key Laboratory of Animal and Plant Resistance,College of Life Science,Tianjin Normal University,Tianjin Key Laboratory of Animal and Plant Resistance,College of Life Science,Tianjin Normal University,Tianjin Key Laboratory of Animal and Plant Resistance,College of Life Science,Tianjin Normal University,Tianjin Key Laboratory of Animal and Plant Resistance,College of Life Science,Tianjin Normal University

Fund Project:

National Key Technology R & D Program of China (2012 AA 092205, 2012 AA 10 A 401); National Basic Research Program of China (2012 CB 114405);Tianjin Developm- ent Program for Innovation and Entrepreneurship(06202-52K16001).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为分析荚膜红细菌和蜡样芽孢杆菌2株益生菌对凡纳滨对虾肠道菌群结构的影响,本实验对凡纳滨对虾进行为期30 d的养殖饲喂实验,饲喂后期利用高通量测序凡纳滨对虾肠道微生物的16S rDNA V4区,来分析不同益生菌饲喂后凡纳滨对虾肠道菌群的结构特征,并结合对虾体质量增加率和攻毒后累计死亡率的宏观指标来进行分析。结果显示:①空白组(CK)、荚膜红细菌组(Rc)和蜡样芽孢杆菌组(Bc)样品OTU范围为374~506,其中CK组对虾肠道菌群OTU数量最低,饲喂益生菌后的2组对虾肠道菌群中OTU数量相对较高;②在门分类水平上,3组的变形菌门数均为最多,CK组主要为变形菌门和少量拟杆菌门,Bc组主要有变形菌门、拟杆菌门、无壁细菌门、厚壁细菌门和假单胞菌,Rc组主要是变形菌门、拟杆菌门、厚壁菌门、酸杆菌门、放线细菌、梭杆菌门和蓝细菌;③稀释曲线和Shannon指数结果可见,CK组样品物种丰度和复杂度最低,且Bc组样品丰度和复杂度相对较高;④PCA分析发现,Rc组和CK组样品微生物组成较为接近,结合宏观对虾体质量增加率和攻毒后累计死亡率的结果分析,可见相较于荚膜红细菌,蜡样芽孢杆菌对凡纳滨对虾肠道微生物菌群影响更显著,且益生效果更佳。研究表明,饲喂益生菌可以扩增对虾肠道微生物菌群丰度,并能抑制弧菌属等有害菌群的生长,提高对虾体质量增加率并降低死亡率,从而达到益生效果,其中以饲喂蜡样芽孢杆菌菌株效果更佳。

    Abstract:

    In order to analyze the effect of Rhodobacter capsulatus and Bacillus cereusr on the intestinal microorganism of Litopenaeus vannamei, the experiment was carried out for 30 days in order to study the effect of two probiotics on the culture and feeding of L. vannamei. The 16s rDNA V4 region of intestinal microorganism of L. vannamei was sequenced with high throughput in the later stage of feeding to analyze the structural characteristics of intestinal microflora of L. vannamei fed with different probiotics, and combined with the macroscopical indexes of the growth rate of body mass and the cumulative mortality of the prawn after poisoning. The results:①the range of OTU was 374~506, in which the number of OTU in intestinal tract of the prawn was the lowest in blank group, and the number of OTU in intestinal tract of shrimp was relatively high in two groups after feeding probiotics; ②at the level of phylum classification, the number of Proteobacteria was the highest in three groups, the CK group was mainly Proteobacteria and a small amount of Bacteroidetes, the Bc group was mainly Proteobacteria, Bacteroidetes, Tenericutes, Firmicutes and Gemmatimonadetes, the Rc group was mainly Proteobacteria, Bacteroidetes, Firmicutes, Acidobacteria, Actinobacteria, Fusobacteria and Cyanobacteria; ③the results of rarefaction curve and Shannon index showed that the species abundance and complexity of blank samples were the lowest, and the sample abundance and complexity of B.cereus group were relatively high; ④PCA analysis showed that the microbial composition of the samples of R. capsulatus group and blank group was close. Combined with the results of macroscopical growth rate of shrimp body mass and cumulative mortality after poisoning, it can be seen that the effect of B. cereus on intestinal microflora of L. vannamei is more significant than that of R. capsulatus, and the probiotic effect is better. The results showed that feeding probiotics could augment the abundance of intestinal microflora of L. vannamei, inhibit the growth of harmful bacteria such as Vibrio, increase the growth rate of body mass and reduce the mortality of prawn, so as to achieve the probiotic effect. The effect of feeding B. cereus was better than that of R. capsulatus.

    参考文献
    [1] 窦春萌, 左志晗, 刘逸尘, 等. 凡纳滨对虾肠道内产消化酶益生菌的分离与筛选[J]. 水产学报, 2016, 40(4):537-546. Dou C M, Zuo Z H, Liu Y H, et al. Isolation and screeing of digestive enzyme producing probiotics from intestine of Litopenaeus vannamei[J]. Journal of Fisheries of China, 2016, 40(4):537-546(in Chinese)
    [2] 王晓琳. 两株潜在益生菌安全性评价及其对凡纳滨对虾生长、免疫相关酶活力、抗WSSV能力的影响[D]. 青岛:中国海洋大学, 2015. Wang X L. The safety evaluation of two potential strains of probiotics and their effects on the growth, immune-related enzyme activities, and the ability of anti-WSSV of Litopenaeus vannamei[D]. Qingdao:Ocean University of China, 2015(in Chinese).
    [3] 李桂英, 宋晓玲, 孙艳. 饲料中益生菌对凡纳滨对虾部分免疫酶活的影响[C]//2010年中国水产学会学术年会论文摘要集. 西安:中国水产学会, 2011. Li G Y, Song X L, Sun Y. Effects of probiotics in feed on the activity of partial immune enzymes of Penaeus vannamei[C]//Abstract of papers of the 2010 Annual meeting of the Chinese Fisheries Society. Xi'an:China Fisheries Society, 2011(in Chinese).
    [4] 丁啸. 基于序列特征的宏基因组数据分析方法研究[D]. 南京:东南大学, 2016. Ding X. Researches on the sequence-feature-based metagenomic data analysis methods[D]. Nanjing:Southeast University, 2016(in Chinese).
    [5] Di Bella J M, Bao Y G, Gloor G B, et al. High throughput sequencing methods and analysis for microbiome research[J]. Journal of Microbiological Methods, 2013, 95(3):401-414
    [6] 陈琼, 李贵阳, 罗坤, 等. 凡纳滨对虾(Litopenaeus vannamei)亲虾繁殖期水体微生物多样性[J]. 海洋与湖沼, 2017, 48(1):130-138. Chen Q, Li G Y, Luo K, et al. Microbial Diversity in broodstock waters of the two genders of Litopenaeus vannamei[J]. Oceanologia et Limnologia Sinica, 2017, 48(1):130-138(in Chinese)
    [7] 沈辉, 万夕和, 何培民, 等. 脊尾白虾肠道微生物菌群结构[J]. 微生物学通报, 2015, 42(10):1922-1928. Shen H, Wan X H, He P M, et al. Bacterial community structure in the intestine of Exopalaemon carinicauda holehuis[J]. Microbiology, 2015, 42(10):1922-1928(in Chinese)
    [8] Liu H Y, Li Z, Tan B P, et al. Isolation of a putative probiotic strain S12 and its effect on growth performance, non-specific immunity and disease-resistance of white shrimp, Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2014, 41(2):300-307
    [9] Bokulich N A, Subramanian S, Faith J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013, 10(1):57-59
    [10] Edgar R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998
    [11] Wang Q, Garrity G M, Tiedje J M, et al. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16):5261-5267
    [12] DeSantis T Z, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology, 2006, 72(7):5069-5072
    [13] Ondov B D, Bergman N H, Phillippy A M, et al. Interactive metagenomic visualization in a Web browser(J)[J]. BMC bioinformatics, 2011, 12(1):385
    [14] Caporaso J G, Bittinger K, Bushman F D, et al. PyNAST:a flexible tool for aligning sequences to a template alignment[J]. Bioinformatics, 2010, 26(2):266-267
    [15] DeSantis Jr T Z, Hugenholtz P, Keller K, et al. NAST:a multiple sequence alignment server for comparative analysis of 16S rRNA genes[J]. Nucleic Acids Research, 2006, 34(Web Server issue):W394
    [16] Chao A. Estimating the population size for capture-recapture data with unequal catchability(J)[J]. Biometrics, 1987, 43(4):783-791
    [17] Avershina E, Frisli T, Rudi K. De novo Semi-alignment of 16S rRNA gene sequences for deep phylogenetic characterization of next generation sequencing data[J]. Microbes and Environments, 2013, 28(2):211-216
    [18] Haas B J, Gevers D, Earl A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 2011, 21(3):494-504
    [19] Li B, Zhang X X, Guo F, et al. Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis[J]. Water Research, 2013, 47(13):4207-4216
    [20] Lozupone C, Lladser M E, Knights D, et al. UniFrac:an effective distance metric for microbial community comparison[J]. The ISME Journal, 2011, 5(2):169-172
    [21] Lozupone C A, Hamady M, Kelley S T, et al. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities[J]. Applied and Environmental Microbiology, 2007, 73(5):1576-1585
    [22] 孟霄鹏, 孟阳, 王悦, 等. 益生菌对凡纳滨对虾免疫功能及肠道菌群的影响[J]. 水产科学, 2017, 36(1):60-65. Meng X P, Meng Y, Wang Y, et al. Effects of probiotics on immunologic functions and intestinal microflora in pacific white leg shrimp Litopenaeus vannamei[J]. Fisheries Science, 2017, 36(1):60-65(in Chinese)
    [23] 薛明, 何瑶瑶, 邱孟德, 等. 高通量测序分析凡纳滨对虾育苗期水体菌群结构特征[J]. 水产学报, 2017, 41(5):785-794. Xue M, He Y Y, Qiu M D, et al. Characterization of aquatic bacterial community of Litopenaeus vannamei larvae during hatchery period with high-throughput sequencing[J]. Journal of Fisheries of China, 2017, 41(5):785-794(in Chinese)
    [24] 王雯雯. 鱼类肠道可定植乳酸杆菌分子生态的研究[D]. 北京:中国农业科学院, 2011. Wang W W. Molecular Ecology of Lactobacillus spp. in the gastrointestine of fish[D]. Beijing:Chinese Academy of Agricultural Sciences, 2011(in Chinese)..
    [25] 林亮. 芽孢杆菌制剂对虾池微生物群落以及对虾肠道菌群的影响[D]. 广州:暨南大学, 2005. Lin L. The effect of bacillus probiotics on microbial communities and shrimp intestinal microflora[D]. Guangzhou:Jinan University, 2005(in Chinese).
    [26] 唐杨, 刘文亮, 宋晓玲, 等. 饲料中补充蜡样芽孢杆菌对凡纳滨对虾生长及其肠道微生物组成的影响[J]. 水产学报, 2017, 41(5):766-774. Tang Y, Liu W L, Song X L, et al. Effects of dietary with bacillus cereus on the growth rate and intestinal microflora of Litopenaeus vannamei[J]. Journal of Fisheries of China, 2017, 41(5):766-774(in Chinese)
    [27] 朱美珍, 吴永强. 荚膜红细菌的分离鉴定及其协同固氮作用[J]. 微生物学通报, 1999, 26(5):342-344. Zhu M Z, Wu Y Q. Studies on the isolation and identification of Rhodobater capsulatus and the acceleration of its nitrogen fixation[J]. Microbiology, 1999, 26(5):342-344(in Chinese)
    [28] 温崇庆, 何瑶瑶, 薛明, 等. 高通量测序分析DNA提取引起的对虾肠道菌群结构偏差[J]. 微生物学报, 2016, 56(1):130-142. Wen C Q, He Y Y, Xue M, et al. Biases on community structure during DNA extraction of shrimp intestinal microbiota revealed by high-throughput sequencing[J]. Acta Microbiologica Sinica, 2016, 56(1):130-142(in Chinese)
    [29] 樊英, 王晓璐, 李乐, 等. 基于高通量测序的不同养殖系统下凡纳滨对虾肠道和水体中微生物的多样性[J]. 广西科学院学报, 2017, 33(4):261-267, 273. Fan Y, Wang X L, Li L, et al. Analysis of aquaculture-water and gut from Fenneropenaeus chinensis in different systems on bacterial diversity based on high-throughput sequencing technology[J]. Journal of Guangxi Academy of Sciences, 2017, 33(4):261-267, 273(in Chinese)
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

尚碧娇,左志晗,窦春萌,李文悦,孙金生.高通量测序法分析两株益生菌对凡纳滨对虾肠道菌群结构的影响[J].水产学报,2018,42(12):1967~1976

复制
分享
文章指标
  • 点击次数:1546
  • 下载次数: 1737
  • HTML阅读次数: 1280
  • 引用次数: 0
历史
  • 收稿日期:2018-02-13
  • 最后修改日期:2018-04-06
  • 录用日期:2018-04-11
  • 在线发布日期: 2018-12-04
文章二维码