GCRV弱毒疫苗免疫草鱼母本的免疫因子代间传递与表达特性
CSTR:
作者:
作者单位:

湖南省特色水产资源利用工程技术中心,湖南农业大学,湖南省特色水产资源利用工程技术中心,湖南农业大学,湖南省特色水产资源利用工程技术中心,湖南农业大学,湖南省特色水产资源利用工程技术中心,湖南农业大学,湖南省特色水产资源利用工程技术中心,湖南农业大学,湖南省特色水产资源利用工程技术中心,湖南农业大学

基金项目:

现代农业产业技术体系建设专项(CARS-46-42)


The expression and transmission of immune factors between generations in maternal Ctenopharyngodon idella after immunization with GCRV attenuated vaccine
Author:
Affiliation:

Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization,Hunan Agricultural University,Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization,Hunan Agricultural University,Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization,Hunan Agricultural University,Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization,Hunan Agricultural University,Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization,Hunan Agricultural University,Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization,Hunan Agricultural University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究GCRV弱毒疫苗母源性免疫的草鱼母本及其子代免疫因子(IgM、C3、LSZ)表达特性及代间传递效应,采用ELISA、Rt-qPCR等方法检测了草鱼母本产前40 d接种疫苗后,母本血液、子代早期发育阶段及2月龄幼鱼3种免疫因子的蛋白活性及基因表达水平。结果显示,经GCRV弱毒疫苗免疫的草鱼母本血液、早期胚胎及幼鱼阶段IgM蛋白活性均显著高于对照组样品。子代各阶段中,28日龄的夏花样品IgM蛋白活性水平最高,而5日龄水花样品中蛋白活性最低;从受精卵发育至3日龄水花阶段,实验组样品免疫因子C3和LSZ的蛋白活性均显著高于对照组;2组鱼中IgM、C3和LSZ蛋白的活性水平随着发育进行,总体上呈先下降后升高的趋势,从卵细胞至3日龄水花阶段实验组样品C3和LSZ蛋白活性水平均显著高于对照组。实验组和对照组受精卵IgM基因的表达水平差异最大,实验组表达量为对照组的3.4倍。从24 h器官形成期至3日龄水花样品中,实验组C3基因的表达水平显著高于对照组。从卵细胞至3 h囊胚期阶段,实验组LSZ基因表达水平显著高于对照组。实验组2月龄草鱼体肾、头肾、脾脏组织中IgM基因表达量均显著高于对照组;感染GCRV病毒后,实验组死亡尾数(2尾)低于对照组死亡尾数(5尾)。研究表明母源性免疫可在草鱼进行代间传递,并对子代起到一定程度的免疫保护作用。

    Abstract:

    In order to investigate the expression characteristics and transmission effects of immune factors between the female parent and the progeny of Ctenopharyngodon idella, after being vaccinated with GCRV attenuated vaccine to female grass carp (40 days old). the protein activity and gene expression levels of IgM, C3 and LSZ were detected in the blood of female parent during the early development embryos of progeny and juvenile fish. The activities of IgM protein in the blood, early embryos and juvenile stage of grass carp were significantly higher than those in the control group by GCRV attenuated vaccine. In each stage of progeny, the expression level of IgM protein was the highest on d 28, while the protein activity was the lowest on d 5. From the fertilized egg to the 3 d water stage, the protein activity of C3 and LSZ were significantly higher in the experimental group than those in the control group. The activity levels of IgM, C3 and LSZ proteins in both groups showed a trend from decline to rise. The activity levels of C3 and LSZ protein in the experimental group were significantly higher than those in the control group from the stages of egg cell to 3 d. The expression level of IgM gene had a big difference between the experimental group and control group, the expression level of the experimental group was 3.4 times that of the control group. From the period of organogenesis (24 h) to the stage of 3 d, the mRNA expression of C3 was significantly higher than that in the control group. From the egg cell to the blastula stage, the mRNA expression of LSZ was significantly higher than that in the control group. After being immunized by attenuated vaccine of GCRV, the mRNA expressions of IgM were significantly higher than those in the control group in the tissues of body kidney, head kidney and spleen of 2-month-old progeny. The number of death fish caused by the GCRV infection in the experimental group (2 fish died) was lower than that in the control group (5 fish died). The results showed that maternal immunization can transmit between generations, and it played an important role in the immune protection of progeny.

    参考文献
    [1] 王志平, 张士璀. 鱼类免疫因子的母体传递及其对子代的保护作用[J]. 水生生物学报, 2010, 34(2):426-430.
    Wang Z P, Zhang S C. Maternal transfer and protective roles of immune relevant factors in fish[J]. Acta Hydrobiologica Sinica, 2010, 34(2):426-430 (in Chinese).
    [2] Simister N E. Placental transport of immunoglobulin G[J]. Vaccine, 2003, 21(24):3365-3369.[DOI:10.1016/S0264-410X(03)00334-7]
    [3] Barua A, Yoshimura Y, Tamura T. Effects of ageing and oestrogen on the localization of immunoglobulin-containing cells in the chicken ovary[J]. Journal of Reproduction & Fertility Supplement, 1998,114(1):11-16.
    [4] Tressler R L, Roth T F. IgG receptors on the embryonic chick yolk sac[J]. Journal of Biological Chemistry, 1987, 262(32):15406-15412.
    [5] Suzuki Y, Orito M, Furukawa K, Aida K. Existence of Low Molecular Weight Immunoglobulin M in Carp Eggs[J]. Fisheries Science, 1994, 60(2):159-162.
    [6] Ellingsen T, Strand C, Monsen E, et al. The ontogeny of complement component C3 in the spotted wolffish (Anarhichas minor Olafsen)[J]. Fish & Shellfish Immunology, 2005, 18(5):351-358.
    [7] Gasque P. Complement:a unique innate immune sensor for danger signals[J]. Molecular Immunology, 2004, 41(11):1089-1098.[DOI:10.1016/j.molimm.2004.06.011]
    [8] An Y, Albright L, Evelyn T. In vitro evidence for the antibacterial role of lysozyme in salmonid eggs[J]. Diseases of Aquatic Organisms, 1994, 19(1):15-19.
    [9] Tateno H, Yamaguchi T, Ogawa T, et al. Immunohistochemical localization of rhamnose-binding lectins in the steelhead trout (Oncorhynchus mykiss)[J]. Developmental & Comparative Immunology, 2002, 26(26):543-550.
    [10] 丁福红, 雷霁霖, 韩明明, 等. 母源免疫对大菱鲆(Scoph-thalmus maximus)子代抗体IgM水平的影响[J]. 海洋与湖沼, 2013, 44(5):1301-1305.
    Ding F H, Lei J L, Han M M, et al. Effect of maternal immunity on the antibody igm level in turbot Scophthalmus maximus offspring[J]. Oceanologia et Limnologia Sinica, 2013, 44(5):1301-1305 (in Chinese).
    [11] Swain P, Dash S, Bal J, et al. Passive transfer of maternal antibodies and their existence in eggs, larvae and fry of Indian major carp, Labeo rohita (Ham.)[J]. Fish & Shellfish Immunology, 2006, 20(4):519-527.
    [12] Mor A, Avtalion R R. Transfer of antibody activity from immunised mother to embryos in tilapias[J]. Journal of Fish Biology, 1990, 37(2):249-255.[DOI:10.1111/jfb.1990.37.issue-2]
    [13] Hanif A, Bakopoulos V, Dimitriadis G J. Maternal transfer of humoral specific and non-specific immune parameters to sea bream (Sparus aurata) larvae[J]. Fish & Shellfish Immunology, 2004, 17(5):411-435.
    [14] 李兵, 周勇, 曾令兵, 等. 化学合成小干扰RNA分子高效抑制草鱼呼肠孤病毒复制[J].病毒学报, 2009(5):388-394.
    Li B, Zhou Y, Zeng L B, et al. Highly efficient inhibition on replication of grass carp reovirus mediated by chemically synthesized small interfering RNAs[J]. Chinese Journal of Virology, 2009 (5):388-394 (in Chinese).
    [15] 褚鹏飞, 朱作言, 汪亚平, 等. 一种新型草鱼呼肠孤病毒人工感染方法[J]. 水生生物学报, 2016, 40(6):1166-1171.
    Chu P F, Zhu Z Y, Wang Y P, et al. Preliminary study on a new method of GCRV artificial infection[J]. Acta Hydrobiologica Sinica, 2016, 40(6):1166-1171 (in Chinese).[DOI:10.7541/2016.151]
    [16] 王杭军, 叶星, 田园园, 等. 草鱼呼肠孤病毒GCRV-GD108株VP5蛋白功能及免疫原性分析[J]. 水产学报, 2013, 37(1):109-116.
    Wang H J, Ye X, Tian Y Y, et al. Analysis of function and immunogenicity of GCRV-GD108 VP5[J]. Journal of Fisheries of China, 2013, 37(1):109-116 (in Chinese).
    [17] Zhu B, Liu G L, Gong Y X, et al. Protective immunity of grass carp immunized with DNA vaccine encoding the vp7 gene of grass carp reovirus using carbon nanotubes as a carrier molecule[J]. Fish & Shellfish Immunology, 2015, 42(2):325-334.
    [18] 奕志娟, 郝贵杰, 袁雪梅, 等. 草鱼出血病灭活疫苗上调草鱼脾细胞主要免疫分子的表达[J].细胞与分子免疫学杂志, 2015, 31(2):177-181.
    Yi Z J, Hao G J, Yuan X M, et al. Inactivated vaccine for hemorrhage of grass carp regulates the expressions of major immune related genes in spleen of grass carp[J]. Chinese Journal of Cellular and Molecular Immunology, 2015, 31(2):177-181 (in Chinese).
    [19] 陈昌福, 李静, 楠田理一. 草鱼母源免疫的初步研究[J]. 华中农业大学学报, 1996 (1):73-78.
    Chen C F, Li J, Riichi K. Preliminary study on maternal immunity of grass carp (Ctenopharyngodon idella)[J]. Journal of Huazhong Agricultural University, 1996, 15(1):73-78 (in Chinese).
    [20] Zhang S, Wang Z, Wang H. Maternal immunity in fish[J]. Developmental & Comparative Immunology, 2013, 39(1-2):72-78.
    [21] 张永安, 聂品. 鱼类体液免疫因子研究进展[J]. 水产学报, 2000, 24(4):376-381.
    Zhang Y A, Nie P. Humoral immune factors of fish:a review[J]. Journal of Fisheries of China, 2000, 24(4):376-381 (in Chinese).
    [22] 雷雪彬, 常藕琴, 石存斌, 等. 草鱼头肾发生组织学与免疫组织化学观察[J]. 水产学报, 2013, 37(6):840-850.
    Lei X B, Chang O Q, Shi C B, et al. Histological and immunohistochemical observations on the early development of head kidney in Ctenopharyngodon idella[J]. Journal of Fisheries of China, 2013, 37(6):840-850 (in Chinese).
    [23] 李春涛, 曾伯平, 张其中. 黄颡鱼IgM基因的个体发生和抗体的代间传递[J]. 水产学报, 2014, 38(5):638-643.
    Li C T, Zeng B P, Zhang Q Z. The ontogenesis and transfer of IgM between generations in yellow catfish (Pelteobagrus fulvidraco)[J]. Journal of Fisheries of China, 2014, 38(5):638-643(in Chinese).
    [24] Picchietti S, Taddei A R, Scapigliati G, et al. Immunoglobulin protein and gene transcripts in ovarian follicles throughout oogenesis in the teleost Dicentrarchus labrax[J]. Cell and Tissue Research, 2004, 315(2):259-270.[DOI:10.1007/s00441-003-0819-9]
    [25] Wang Z, Zhang S, Tong Z, et al. Maternal transfer and protective role of the alternative complement components in zebrafish Danio rerio[J]. PLoS one, 2009, 4(2):4498.[DOI:10.1371/journal.pone.0004498]
    [26] Ellingsen T, Strand C, Monsen E, et al. The ontogeny of complement component C3 in the spotted wolffish (Anarhichas minor Olafsen)[J]. Fish & Shellfish Immunology, 2005, 18(5):351-358
    [27] Huttenhuis H B, Grou C P, Taverne-Thiele A J, et al. Carp (Cyprinus carpio L.) innate immune factors are present before hatching[J]. Fish & Shellfish Immunology, 2006, 20(4):586-596.
    [28] Løvoll M, Johnsen H, Boshra H, et al. The ontogeny and extrahepatic expression of complement factor C3 in Atlantic salmon (Salmo salar)[J]. Fish & Shellfish Immunology, 2007, 23(3):542-552.
    [29] Wang Z, Zhang S. The role of lysozyme and complement in the antibacterial activity of zebrafish (Danio rerio) egg cytosol[J]. Fish & Shellfish Immunology, 2010, 29(5):773-777.
    [30] Yousif A N, Albright L J, Evelyn T P T. In vitro evidence for the antibacterial role of lysozyme in salmonid eggs[J]. Diseases of Aquatic Organisms, 1994, 19(1):15-19.
    [31] Takemura A, Takano K. Lysozyme in the ovary of tilapia (Oreochromis mossambicus):its purification and some biological properties[J]. Fish Physiology and Biochemistry. 1995, 14(5):415-421.[DOI:10.1007/BF00003379]
    [32] 刘小宁, 李正龙, 王志平, 等. 母体免疫对斑马鱼胚胎中溶菌酶基因表达的影响[J]. 水产科学, 2014, 33(8)525-528.
    Liu X N, Li Z L, Wang Z P, et al. Influence of maternal immunization on expression of lysozmye genes in zebrafish embryos[J]. Fisheries Science, 2014, 33(8)525-528 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖调义,周智愚,王荣华,李耀国,金生振,李伟,王红权. GCRV弱毒疫苗免疫草鱼母本的免疫因子代间传递与表达特性[J].水产学报,2017,41(8):1308~1318

复制
分享
文章指标
  • 点击次数:2024
  • 下载次数: 2590
  • HTML阅读次数: 1274
  • 引用次数: 0
历史
  • 收稿日期:2016-12-19
  • 最后修改日期:2017-04-18
  • 录用日期:2017-07-16
  • 在线发布日期: 2017-08-20
文章二维码