工厂化循环水系统 (RAS)养殖淡水鱼异味物质的产生及去除研究进展
作者:
中图分类号:

S 959

基金项目:

国家重点研发计划(2022YFD2001700);国家大宗淡水鱼产业技术体系(CARS45-24);浙江省重点研发计划(2023C02050)


Advances in the production and removal of off-flavors in Recirculating Aquaculture Systems (RAS) for the cultivation of freshwater fish
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [94]
  • |
  • 相似文献 [15]
  • | | |
  • 文章评论
    摘要:

    工厂化循环水养殖系统 (RAS)作为一种先进的水产养殖技术,通过精细化的系统管理和应用前沿工程技术,实现了水资源的高效利用和饲料消耗的显著降低。尽管如此,养殖过程中产生的代谢废物积累,可能诱发严重的异味问题,对养殖环境的稳定性和生产效率构成潜在威胁。本文综述了RAS系统中异味产生的机理,并深入分析两种关键异味物质—土臭素 (GSM)和2-甲基异莰醇 (2-MIB)的来源及其影响因素。此外,本文系统性地回顾了RAS系统中异味去除技术的最新研究进展,涵盖了生物、物理和化学处理等多种方法。通过全面比较这些技术在效率、成本、操作以及环境友好性等方面的优劣,为RAS技术的进一步优化和应用提供理论依据和实践指导,以期促进循环水养殖技术的可持续发展。

    Abstract:

    Recirculating Aquaculture Systems (RAS), as an advanced aquaculture technology, achieve efficient utilization of water resources and a significant reduction in feed consumption through meticulous system management and the application of cutting-edge engineering techniques. Despite these advancements, the accumulation of metabolic waste generated during the cultivation process may trigger severe odor issues, posing a potential threat to the stability of the cultivation environment and production efficiency. This review comprehensively examines the mechanisms of odor generation in RAS systems and provides an in-depth analysis of the origins and influencing factors of two key odor-causing substances-geosmin (GSM) and 2-methylisoborneol (2-MIB). Furthermore, this paper systematically reviews the latest research progress in odor removal technologies within RAS systems, covering a variety of methods including biological, physical, and chemical treatments. By thoroughly comparing the advantages and disadvantages of these technologies in terms of efficiency, cost, ease of operation and environmental friendliness, this article aims to provide a theoretical basis and practical guidance for the further optimization and application of RAS technology, with the expectation of promoting the sustainable development of recirculating water aquaculture technology.

    参考文献
    [1] Podduturi R, Petersen M A, Mahmud S, et al. Potential contribution of fish feed and phytoplankton to the content of volatile terpenes in cultured pangasius (Pangasianodon hypophthalmus) and tilapia (Oreochromis niloticus)[J]. Journal of Agricultural and Food Chemistry, 2017, 65(18): 3730-3736.
    [2] Burr G S, Wolters W R, Schrader K K, et al. Impact of depuration of earthy-musty off-flavors on fillet quality of Atlantic salmon, Salmo salar, cultured in a recirculating aquaculture system[J]. Aquacultural Engineering, 2012, 50: 28-36.
    [3] Schrader K K, Summerfelt S T. Distribution of off-flavor compounds and isolation of geosmin-producing bacteria in a series of water recirculating systems for rainbow trout culture[J]. North American Journal of Aquaculture, 2010, 72(1): 1-9.
    [4] Guttman L, van Rijn J. Identification of conditions underlying production of geosmin and 2-methylisoborneol in a recirculating system[J]. Aquaculture, 2008, 279(1-4): 85-91.
    [5] 李冲炜, 邹攀, 杨兆光, 等. 天然水体中两种主要异嗅物质的来源及迁移转化研究进展[J]. 微生物学杂志, 2016, 36(2): 74-80.
    Li C W, Zou P, Yang Z G, et al. Resource, migration & transformation of two main off-flavor compounds in natural water[J]. Journal of Microbiology, 2016, 36(2): 74-80 (in Chinese).
    [6] Schrader K K, Green B W, Perschbacher P W. Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish (Ictalurus punctatus)[J]. Aquacultural Engineering, 2011, 45(3): 118-126.
    [7] Lindholm-Lehto P C, Vielma J, Pakkanen H, et al. Depuration of geosmin-and 2-methylisoborneol-induced off-flavors in recirculating aquaculture system (RAS) farmed European whitefish Coregonus lavaretus[J]. Journal of Food Science and Technology, 2019, 56(10): 4585-4594.
    [8] 刘利平, 李慷, 闫莉. 水产动物体内土腥味物质的来源、检测及其防控与去除的研究进展[J]. 水产学报, 2021, 45(5): 813-829.
    Liu L P, Li K, Yan L. Sources, determination, prevention and elimination of off-flavour compounds in aquatic animals[J]. Journal of Fisheries of China, 2021, 45(5): 813-829 (in Chinese).
    [9] Lindholm‐Lehto P C, Vielma J. Controlling of geosmin and 2‐methylisoborneol induced off‐flavours in recirculating aquaculture system farmed fish-a review[J]. Aquaculture Research, 2019, 50(1): 9-28.
    [10] Hathurusingha P I, Davey K R. Experimental validation of a time-dependent model for chemical taste taint accumulation as geosmin (GSM) and 2-methylisoborneol (MIB) in commercial RAS farmed barramundi (Lates calcarifer)[J]. Ecological Modelling, 2016, 340: 17-27.
    [11] Lindholm-Lehto P C, Suurnäkki S, Pulkkinen J T, et al. Effect of peracetic acid on levels of geosmin, 2-methylisoborneol, and their potential producers in a recirculating aquaculture system for rearing rainbow trout (Oncorhynchus mykiss)[J]. Aquacultural Engineering, 2019, 85: 56-64.
    [12] Nam-Koong H, Schroeder J P, Petrick G, et al. Removal of the off-flavor compounds geosmin and 2-methylisoborneol from recirculating aquaculture system water by ultrasonically induced cavitation[J]. Aquacultural Engineering, 2016, 70: 73-80.
    [13] Azaria S, Nir S, van Rijn J. Combined adsorption and degradation of the off-flavor compound 2-methylisoborneol in sludge derived from a recirculating aquaculture system[J]. Chemosphere, 2017, 169: 69-77.
    [14] Schrader K K, Davidson J W, Rimando A M, et al. Evaluation of ozonation on levels of the off-flavor compounds geosmin and 2-methylisoborneol in water and rainbow trout Oncorhynchus mykiss from recirculating aquaculture systems[J]. Aquacultural Engineering, 2010, 43(2): 46-50.
    [15] Davidson J, Good C, Welsh C, et al. The effects of ozone and water exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water recirculating systems[J]. Aquacultural Engineering, 2011, 44(3): 80-96.
    [16] Kutschera K, Börnick H, Worch E. Photoinitiated oxidation of geosmin and 2-methylisoborneol by irradiation with 254 nm and 185 nm UV light[J]. Water Research, 2009, 43(8): 2224-2232.
    [17] Ho L, Newcombe G, Croué J P. Influence of the character of NOM on the ozonation of MIB and geosmin[J]. Water Research, 2002, 36(3): 511-518.
    [18] Silvey J K G, Roach A W. Studies on microbiotic cycles in surface waters[J]. Journal AWWA, 1964, 56(1): 60-72.
    [19] Narayan L V, III W J N. Biological control: isolation and bacterial oxidation of the taste‐and‐odor compound geosmin[J]. Journal AWWA, 1974, 66(9): 532-536.
    [20] Guttman L, van Rijn J. 2-Methylisoborneol and geosmin uptake by organic sludge derived from a recirculating aquaculture system[J]. Water Research, 2009, 43(2): 474-480.
    [21] Ho L, Hoefel D, Bock F, et al. Biodegradation rates of 2-methylisoborneol (MIB) and geosmin through sand filters and in bioreactors[J]. Chemosphere, 2007, 66(11): 2210-2218.
    [22] Ho L, Sawade E, Newcombe G. Biological treatment options for cyanobacteria metabolite removal–a review[J]. Water Research, 2012, 46(5): 1536-1548.
    [23] Jüttner F. Physiology and biochemistry of odorous compounds from freshwater cyanobacteria and algae[J]. Water Science and Technology, 1995, 31(11): 69-78.
    [24] Lanciotti E, Santini C, Lupi E, et al. Actinomycetes, cyanobacteria and algae causing tastes and odours in water of the River Arno used for the water supply of Florence[J]. Journal of Water Supply: Research and Technology—AQUA, 2003, 52(7): 489-500.
    [25] Thaysen A C, Pentelow F T K. The origin of an earthy or muddy taint in fish: I. The nature and isolation of the taint[J]. Annals of Applied Biology, 1936, 23(1): 99-104.
    [26] Azaria S, van Rijn J. Off-flavor compounds in recirculating aquaculture systems (RAS): production and removal processes[J]. Aquacultural Engineering, 2018, 83: 57-64.
    [27] Clercin N A, Druschel G K. Influence of environmental factors on the production of MIB and geosmin metabolites by bacteria in a eutrophic reservoir[J]. Water Resources Research, 2019, 55(7): 5413-5430.
    [28] Rurangwa E, Verdegem M C J. Microorganisms in recirculating aquaculture systems and their management[J]. Reviews in Aquaculture, 2015, 7(2): 117-130.
    [29] Devi A, Chiu Y T, Hsueh H T, et al. Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: current status and challenges[J]. Water Research, 2021, 188: 116478.
    [30] Sakuda S, Isogai A, Matsumoto S, et al. Isolation and structure of isobutyrylleucanicidin produced by Streptomyces halstedii[J]. Agricultural and Biological Chemistry, 1987, 51(10): 2841-2842.
    [31] Ludwig F, Medger A, Börnick H, et al. Identification and expression analyses of putative sesquiterpene synthase genes in Phormidium sp. and prevalence of geoA-like genes in a drinking water reservoir[J]. Applied and Environmental Microbiology, 2007, 73(21): 6988-6993.
    [32] Dittmann E, Gugger M, Sivonen K, et al. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria[J]. Trends in Microbiology, 2015, 23(10): 642-652.
    [33] Wang C M, Cane D E. Biochemistry and molecular genetics of the biosynthesis of the earthy odorant methylisoborneol in Streptomyces coelicolor[J]. Journal of the American Chemical Society, 2008, 130(28): 8908-8909.
    [34] Auffret M, Yergeau É, Pilote A, et al. Impact of water quality on the bacterial populations and off-flavours in recirculating aquaculture systems[J]. FEMS Microbiology Ecology, 2013, 84(2): 235-247.
    [35] Lukassen M B, Saunders A M, Sindilariu P D, et al. Quantification of novel geosmin-producing bacteria in aquaculture systems[J]. Aquaculture, 2017, 479: 304-310.
    [36] Auffret M, Pilote A, Proulx É, et al. Establishment of a real-time PCR method for quantification of geosmin-producing Streptomyces spp. in recirculating aquaculture systems[J]. Water Research, 2011, 45(20): 6753-6762.
    [37] 王旭冰. 养殖美国红鱼微生物去腥技术研究[D]. 宁波: 宁波大学, 2010: 87-89.
    Wang X B. Study on the deodorization technic of microbe in Sciaenops ocellatus[D]. Ningbo: Ningbo University, 2010: 87-89 (in Chinese).
    [38] Saadoun I M K, Schrader K K, Blevins W T. Environmental and nutritional factors affecting geosmin synthesis by Anabaena SP.[J]. Water Research, 2001, 35(5): 1209-1218.
    [39] Sarker P, Pilote A, Auffret M, et al. Reducing geosmin off-flavor compounds and waste outputs through dietary phosphorus management in rainbow trout aquaculture[J]. Aquaculture Environment Interactions, 2014, 6(1): 105-117.
    [40] Judet-Correia D, Bensoussan M, Charpentier C, et al. Influence of temperature, copper and CO2 on spore counts and geosmin production by Penicillium expansum[J]. Australian Journal of Grape and Wine Research, 2013, 19(1): 81-86.
    [41] Abd El-Hack M E, El-Saadony M T, Elbestawy A R, et al. Undesirable odour substances (geosmin and 2-methylisoborneol) in water environment: sources, impacts and removal strategies[J]. Marine Pollution Bulletin, 2022, 178: 113579.
    [42] Clark K E, Gobas F A P C, Mackay D. Model of organic chemical uptake and clearance by fish from food and water[J]. Environmental Science & Technology, 1990, 24(8): 1203-1213.
    [43] Howgate P. Tainting of farmed fish by geosmin and 2-methyl-iso-borneol: a review of sensory aspects and of uptake/depuration[J]. Aquaculture, 2004, 234(1-4): 155-181.
    [44] Schram E, Schrama J W, van Kooten T, et al. Experimental validation of geosmin uptake in rainbow trout, Oncorhynchus mykiss (Waldbaum) suggests biotransformation[J]. Aquaculture Research, 2018, 49(2): 668-675.
    [45] Davidson J, Schrader K, Ruan E, et al. Evaluation of depuration procedures to mitigate the off-flavor compounds geosmin and 2-methylisoborneol from Atlantic salmon Salmo salar raised to market-size in recirculating aquaculture systems[J]. Aquacultural Engineering, 2014, 61: 27-34.
    [46] Papp Z G, Kerepeczki É, Pekár F, et al. Natural origins of off-flavours in fish related to feeding habits[J]. Water Science and Technology, 2007, 55(5): 301-309.
    [47] Josephson D B, Lindsay R C, Stuiber D A. Volatile compounds characterizing the aroma of fresh Atlantic and Pacific oysters[J]. Journal of Food Science, 1985, 50(1): 5-9.
    [48] Lindholm-Lehto P, Koskela J, Leskinen H, et al. Off-flavors and lipid components in rainbow trout (Oncorhynchus mykiss) reared in RAS: differences in families of low and high lipid contents[J]. Aquaculture, 2022, 559: 738418.
    [49] Moretto J A, Freitas P N N, Souza J P, et al. Off-flavors in aquacultured fish: origins and implications for consumers[J]. Fishes, 2022, 7(1): 34.
    [50] Phetsang H, Panpipat W, Panya A, et al. Chemical characteristics and volatile compounds profiles in different muscle part of the farmed hybrid catfish (Clarias macrocephalus×Clarias gariepinus)[J]. International Journal of Food Science & Technology, 2022, 57(1): 310-322.
    [51] Robertson R F, Jauncey K, Beveridge M C M, et al. Depuration rates and the sensory threshold concentration of geosmin responsible for earthy-musty taint in rainbow trout, Onchorhynchus mykiss[J]. Aquaculture, 2005, 245(1-4): 89-99.
    [52] Vallod D, Cravedi J P, Hillenweck A, et al. Analysis of the off-flavor risk in carp production in ponds in Dombes and Forez (France)[J]. Aquaculture International, 2007, 15(3): 287-298.
    [53] Petersen M A, Hyldig G, Strobel B W, et al. Chemical and sensory quantification of geosmin and 2-methylisoborneol in rainbow trout (Oncorhynchus mykiss) from recirculated aquacultures in relation to concentrations in basin water[J]. Journal of Agricultural and Food Chemistry, 2011, 59(23): 12561-12568.
    [54] Jones B, Fuller S, Carton A G. Earthy-muddy tainting of cultured barramundi linked to geosmin in tropical northern Australia[J]. Aquaculture Environment Interactions, 2013, 3(2): 117-124.
    [55] Palmeri G, Turchini G M, Caprino F, et al. Biometric, nutritional and sensory changes in intensively farmed Murray cod (Maccullochella peelii peelii, Mitchell) following different purging times[J]. Food Chemistry, 2008, 107(4): 1605-1615.
    [56] Lindholm-Lehto P C, Kiuru T, Hannelin P. Control of off-flavor compounds in a full-scale recirculating aquaculture system rearing rainbow trout Oncorhynchus mykiss[J]. Journal of Applied Aquaculture, 2022, 34(2): 469-488.
    [57] Dietrich A M, Burlingame G A. A review: the challenge, consensus, and confusion of describing odors and tastes in drinking water[J]. Science of the Total Environment, 2020, 713: 135061.
    [58] Hathurusingha P I, Davey K R. A predictive model for taste taint accumulation in Recirculating Aquaculture Systems (RAS) farmed-fish–demonstrated with geosmin (GSM) and 2-methylisoborneol (MIB)[J]. Ecological Modelling, 2014, 291: 242-249.
    [59] Gutierrez R, Whangchai N, Sompong U, et al. Off-flavour in Nile tilapia (Oreochromis niloticus) cultured in an integrated pond-cage culture system[J]. Maejo International Journal of Science and Technology, 2013, 7(Special Issue): S1-S13.
    [60] Robertson R F, Hammond A, Jauncey K, et al. An investigation into the occurrence of geosmin responsible for earthy–musty taints in UK farmed rainbow trout, Onchorhynchus mykiss[J]. Aquaculture, 2006, 259(1-4): 153-163.
    [61] Lukassen M B, de Jonge N, Bjerregaard S M, et al. Microbial production of the off-flavor geosmin in tilapia production in Brazilian water reservoirs: importance of bacteria in the intestine and other fish-associated environments[J]. Frontiers in Microbiology, 2019, 10: 2447.
    [62] Tucker C S, Schrader K K. Off‐flavors in pond‐grown ictalurid catfish: causes and management options[J]. Journal of the World Aquaculture Society, 2020, 51(1): 7-92.
    [63] Houle S, Schrader K K, Le François N R, et al. Geosmin causes off‐flavour in arctic charr in recirculating aquaculture systems[J]. Aquaculture Research, 2011, 42(3): 360-365.
    [64] Noguera P M, Egiddi M, Södergren J, et al. More than just geosmin and 2‐methylisoborneol? Off‐flavours associated with recirculating aquaculture systems[J]. Reviews in Aquaculture, 2024, 16(4): 2034-2063.
    [65] Tucker C S. Off-flavor problems in aquaculture[J]. Reviews in Fisheries Science, 2000, 8(1): 45-88.
    [66] Persson F, Heinicke G, Hedberg T, et al. Removal of geosmin and MIB by biofiltration-an investigation discriminating between adsorption and biodegradation[J]. Environmental Technology, 2007, 28(1): 95-104.
    [67] Ma N N, Luo G Z, Tan H X, et al. Removal of geosmin and 2-methylisoborneol by bioflocs produced with aquaculture waste[J]. Aquaculture International, 2016, 24(1): 345-356.
    [68] Guttman L, van Rijn J. Isolation of bacteria capable of growth with 2-methylisoborneol and geosmin as the sole carbon and energy sources[J]. Applied and Environmental Microbiology, 2012, 78(2): 363-370.
    [69] Tanaka A, Oritani T, Uehara F, et al. Biodegradation of a musty odour component, 2-methylisoborneol[J]. Water Research, 1996, 30(3): 759-761.
    [70] Yuan R F, Zhou B H, Shi C H, et al. Biodegradation of 2-methylisoborneol by bacteria enriched from biological activated carbon[J]. Frontiers of Environmental Science & Engineering, 2012, 6(5): 701-710.
    [71] Eaton R W, Sandusky P. Biotransformations of 2-methylisoborneol by camphor-degrading bacteria[J]. Applied and Environmental Microbiology, 2009, 75(3): 583-588.
    [72] Hoefel D, Ho L, Aunkofer W, et al. Cooperative biodegradation of geosmin by a consortium comprising three gram‐negative bacteria isolated from the biofilm of a sand filter column[J]. Letters in Applied Microbiology, 2006, 43(4): 417-423.
    [73] McDowall B, Hoefel D, Newcombe G, et al. Enhancing the biofiltration of geosmin by seeding sand filter columns with a consortium of geosmin-degrading bacteria[J]. Water Research, 2009, 43(2): 433-440.
    [74] Zhou B H, Yuan RF, Shi C H, et al. Biodegradation of geosmin in drinking water by novel bacteria isolated from biologically active carbon[J]. Journal of Environmental Sciences, 2011, 23(5): 816-823.
    [75] Eaton R W, Sandusky P. Biotransformations of (+/-)-geosmin by terpene-degrading bacteria[J]. Biodegradation, 2010, 21(1): 71-79.
    [76] Du K, Liu J, Zhou B H, et al. Isolation of bacteria capable of removing 2-methylisoborneol and effect of cometabolism carbon on biodegradation[J]. Environmental Engineering Research, 2016, 21(3): 256-264.
    [77] Schram E, Schrama J, Kusters K, et al. Effects of exercise and temperature on geosmin excretion by European eel (Anguilla anguilla)[J]. Aquaculture, 2016, 451: 390-395.
    [78] Kropp R, Summerfelt S T, Woolever K, et al. A novel advanced oxidation process (AOP) that rapidly removes geosmin and 2-methylisoborneol (MIB) from water and significantly reduces depuration times in Atlantic salmon Salmo salar RAS aquaculture[J]. Aquacultural Engineering, 2022, 97: 102240.
    [79] Schram E, van Kooten T, van de Heul J W, et al. Geosmin depuration from European eel (Anguilla anguilla) is not affected by the water renewal rate of depuration tanks[J]. Aquaculture Research, 2017, 48(9): 4646-4655.
    [80] Drikas M, Dixon M, Morran J. Removal of MIB and geosmin using granular activated carbon with and without MIEX pre-treatment[J]. Water Research, 2009, 43(20): 5151-5159.
    [81] Zoschke K, Engel C, Börnick H, et al. Adsorption of geosmin and 2-methylisoborneol onto powdered activated carbon at non-equilibrium conditions: influence of NOM and process modelling[J]. Water Research, 2011, 45(15): 4544-4550.
    [82] Matsui Y, Yoshida T, Nakao S, et al. Characteristics of competitive adsorption between 2-methylisoborneol and natural organic matter on superfine and conventionally sized powdered activated carbons[J]. Water Research, 2012, 46(15): 4741-4749.
    [83] Huang X L, Wang S, Wang G X, et al. Kinetic and mechanistic investigation of geosmin and 2-methylisoborneol degradation using UV-assisted photoelectrochemical[J]. Chemosphere, 2022, 290: 133325.
    [84] Srinivasan R, Sorial G A. Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: a critical review[J]. Journal of Environmental Sciences, 2011, 23(1): 1-13.
    [85] Raj R, Tripathi A, Das S, et al. Removal of caffeine from wastewater using electrochemical advanced oxidation process: a mini review[J]. Case Studies in Chemical and Environmental Engineering, 2021, 4: 100129.
    [86] Rodriguez-Gonzalez L, Pettit S L, Zhao W, et al. Oxidation of off flavor compounds in recirculating aquaculture systems using UV-TiO2 photocatalysis[J]. Aquaculture, 2019, 502: 32-39.
    [87] Pettit S L, Rodriguez-Gonzalez L, Michaels J T, et al. Parameters influencing the photocatalytic degradation of geosmin and 2-methylisoborneol utilizing immobilized TiO2[J]. Catalysis Letters, 2014, 144: 1460-1465.
    [88] Bamuza-Pemu E E, Chirwa E M. Photocatalytic degradation of geosmin: reaction pathway analysis[J]. Water SA, 2012, 38(5): 689-696.
    [89] 周日安, 张苏燕, 郑仕, 等. 活性炭去除水中的2-甲基异莰醇和土臭素的优化试验研究[J]. 城镇供水, 2023(1): 65-68.
    Zhou R A, Zhang S Y, Zheng S, et al. Study on the removal of 2-methylisoborneol and geosmin from water by activated carbon[J]. City and Town Water Supply, 2023(1): 65-68 (in Chinese).
    [90] Peng J Y, Wang Q Y, Li Z B, et al. Pilot testing and engineering application of O3/H2O2 process for 2-methylisoborneol and geosmin removal in drinking water treatment[J]. Journal of Water Process Engineering, 2024, 60: 105140.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

向坤,孙浩峰,徐雨晴,裴洛伟,赵建,叶章颖.工厂化循环水系统 (RAS)养殖淡水鱼异味物质的产生及去除研究进展[J].水产学报,2024,48(12):129501

复制
分享
文章指标
  • 点击次数:160
  • 下载次数: 142
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-08-09
  • 最后修改日期:2024-09-09
  • 录用日期:2024-10-13
  • 在线发布日期: 2024-12-18
文章二维码