大管鞭虾线粒体全基因组测定及对虾总科的系统发育
作者:
中图分类号:

Q 785;S 917.4

基金项目:

2023年浙江渔场渔业资源动态监测调查项目;舟山市科技计划项目(2021C21017)


Mitochondrial genome sequencing of Solenocera melantho and phylogenetic analysis of Penaeoidea
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [82]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 拓展管鞭虾科虾类的分子鉴定技术、种质资源评价以及系统进化等研究。方法 通过二代高通量测序技术得到大管鞭虾线粒体全基因组,对线粒体基因进行注释并对其序列结构进行分析。结果 大管鞭虾线粒体全基因组序列全长为15 940 bp,碱基组成为A (35.66%)、T (32%)、G (11.14%)、C (21.20%);A+T含量为67.66%,表现出明显的AT偏向性。大管鞭虾线粒体共编码37个基因,包括13个蛋白质编码基因(PCGs),22个tRNA和2个rRNA;其中14个基因位于负链,23个基因位于正链,与其他管鞭虾线粒体基因组相似。从对虾总科下的5科中选取10个物种为代表进行选择压力分析,发现在进化过程中对虾总科所有蛋白质编码基因都受到纯化选择作用。另外通过结合对虾总科下5科共32个物种的线粒体全基因组的13个蛋白质编码基因构建了系统发育树,结果支持管鞭虾科的单系性,以及大管鞭虾与中华管鞭虾亲缘关系最近。结论 研究结果弥补了大管鞭虾分子生物学领域的空白,明确了大管鞭虾的系统进化地位,通过比较物种之间的基因重排特点和构建系统发育树来探讨对虾总科种间进化规律,为对虾总科系统发育的研究提供了更多参考。

    Abstract:

    To expand research on molecular identification techniques, germplasm resource evaluation, and systematic evolution in Solenoceridae shrimp, we utilized second-generation high-throughput sequencing technology to obtain the complete mitochondrial genome of Solenocera melantho. The mitochondrial genes were annotated, and their sequence structure was analyzed. The total length of the S. melantho mitogenome was 15 940 bp, with a base composition of A (35.66%), T (32.00%), G (11.14%), and C (21.20%); the A+T content was 67.66%, indicating a pronounced AT bias. The S. melantho mitogenome encodes a total of 37 genes, including 13 protein-coding genes (PCGs), 22 tRNAs, and 2 rRNAs. Of these, 14 genes were located on the negative strand, while 23 genes were located on the positive strand, showing similarity to other Solenoceridae mitogenomes. Most PCGs initiated with typical codons ATG and ATT, but ACG for cox1, ATC for atp8, and ATA for nad5. The termination codons for cox1, cox2, cox3, nad3, and nad5 were incomplete, all being T--, while cob terminated with TAG, and all other PCGs used TAA as the termination codon. trnS1 lacked the DHU arm, and trnY lacked the acceptor stem, whileas the remaining 20 tRNAs exhibited the typical cloverleaf structure. Leu and Ser were the most commonly used amino acids, and GGA, UUA, and CGA were the three most frequently used codons. For selection pressure analysis, 10 representative species were selected from 5 families under Penaeoidea, revealing that all PCGs in Penaeoidea experienced purifying selection during evolution. Additionally, a phylogenetic tree was constructed using the 13 PCGs from the complete mitogenomes of 32 species from the 5 families under Penaeoidea. The results supported the monophyly of Solenoceridae and indicated that S. melantho was most closely related to S. crassicornis. This study filled the gap in the molecular biology of S. melantho, clarified its systematic evolutionary position, explored gene rearrangement characteristics among species, and provided more references for studying interspecific evolution in Penaeoidea through phylogenetic analysis.

    参考文献
    [1] Pérez-Farfante I, Kensley B. Penaeoid and sergestoid shrimps and prawns of the world. Keys and Diagnoses for the Families and Genera[M]. Paris: Memoires du Muséum National d’Histoire Naturelle, 1997, 175: 1-233.
    [2] Guo Y H, Liu H X, Feng J T, et al. Characterization of the complete mitochondrial genomes of two species of Penaeidae (Decapoda: Dendrobranchiata) and the phylogenetic implications for Penaeoidea[J]. Genomics, 2021, 113(1): 1054-1063.
    [3] Ma K Y, Chan T Y, Chu K H. Phylogeny of penaeoid shrimps (Decapoda: Penaeoidea) inferred from nuclear protein-coding genes[J]. Molecular Phylogenetics and Evolution, 2009, 53(1): 45-55.
    [4] 徐琰. 中国近海仿对虾属分子系统演化和近似种问题的研究[D]. 青岛: 中国科学院海洋研究所, 2005.
    Xu Y. Study on the molecular phylogeny of coastal Gunus parapenaeopsis based on Chinese species and the classification status of close species[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2005 (in Chinese).
    [5] 刘瑞玉. 关于对虾类(属)学名的改变和统一问题[M]//中国甲壳动物学会. 甲壳动物学论文集(第四辑). 北京: 科学出版社, 2003.
    Liu R Y. On the unification of the scientific name of penaeid shrimp (Crustacea Decapoda)[M]//Chinese Crustacean Society. Transactions of the Chinese Crustacean Society. No. 4. Beijing: Science Press, 2003 (in Chinese).
    [6] Burkenroad M D. Littoral Penaeidea chiefly from the Bingham Oceanographic Collection, with a revision of Penaeopsis and descriptions of two new genera and eleven new American species[C]//Bulletin of the Bingham Oceanographic Collection. Vol. 4. New Haven: Yale Peabody Museum, 1934: 1927-1967.
    [7] Cheng J, Chan T Y, Zhang N, et al. Mitochondrial phylogenomics reveals insights into taxonomy and evolution of Penaeoidea (Crustacea: Decapoda)[J]. Zoologica Scripta, 2018, 47(5): 582-594.
    [8] Cronin T J, Conrad J, Kerkhove T R H, et al. Characterization of the complete mitochondrial genome of the Atlantic seabob shrimp Xiphopenaeus kroyeri Heller, 1862 (Decapoda: Dendrobranchiata: Penaeidae), with insights into the phylogeny of Penaeidae[J]. Journal of Crustacean Biology, 2022, 42(1): ruac004.
    [9] Vázquez-Bader A R, Carrero J, García-Varela M, et al. Molecular phylogeny of Superfamily Penaeoidea Rafinesque-Schmaltz, 1815, based on mitochondrial 16S partial sequence analysis[J]. Journal of Shellfish Research, 2004, 23(3): 911-917.
    [10] 李惠玉, 金艳, 李圣法. 东海北部大管鞭虾的食性[J]. 应用生态学报, 2016, 27(3): 937-945.
    Li H Y, Jin Y, Li S F. Feeding habits of Solenocera melantho in the northern East China Sea[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 937-945 (in Chinese).
    [11] 薛利建, 宋海棠. 东海大管鞭虾的数量分布和生物学特性[J]. 浙江海洋学院学报(自然科学版), 2004, 23(3): 199-202,206.
    Xue L J, Song H T. Study on the biomass distribution & biological characteristics of Solenocera melantho in the East China Sea[J]. Journal of Zhejiang Ocean University (Natural Science Edition), 2004, 23(3): 199-202,206 (in Chinese).
    [12] Holthuis L B. FAO species catalogue. Volume 1: Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries[J]. FAO Fisheries Synopsis, 1980(125): 366.
    [13] Oh T Y, Choi J H, Cha H K, et al. Growth and reproduction of deep-water mud shrimp (Solenocera melantho) around Geomun Island, Korea[J]. Korean Journal of Fisheries and Aquatic Sciences, 2005, 38(4): 232-238.
    [14] Jun O, Katsumi N. Rearing trial of the deep-water mud shrimp Solenocera melantho De Man, 1907[J]. Cancer, 1997(6): 23-26.
    [15] 李惠玉, 凌建忠, 李圣法. 黄、东海底栖性甲壳动物种类组成的季节变化[J]. 渔业科学进展, 2009, 30(3): 13-19.
    Li H Y, Ling J Z, Li S F. Seasonal composition of crustacean species in the East China Sea and Yellow Sea[J]. Progress in Fishery Sciences, 2009, 30(3): 13-19 (in Chinese).
    [16] 张学健, 程家骅, 沈伟, 等. 黄海南部黄鮟鱇摄食生态[J]. 生态学报, 2010, 30(12): 3117-3125.
    Zhang X J, Cheng J H, Shen W, et al. Feeding ecology of Lophius litulon in the south of Yellow Sea[J]. Acta Ecologica Sinica, 2010, 30(12): 3117-3125 (in Chinese).
    [17] 潘绪伟, 程家骅. 长江口外海域龙头鱼营养生态学特征[J]. 中国水产科学, 2011, 18(5): 1132-1140.
    Pan X W, Cheng J H. Feeding ecology of Harpadon nehereus in areas adjacent to Changjiang River estuary[J]. Journal of Fishery Sciences of China, 2011, 18(5): 1132-1140 (in Chinese).
    [18] 薛利建, 朱江峰, 贺舟挺, 等. 东海大管鞭虾生长参数及持续渔获量分析[J]. 浙江海洋学院学报(自然科学版), 2009, 28(3): 292-297,378.
    Xue L J, Zhu J F, He Z T, et al. Population dynamics and estimation of sustaining yield for Solenocera melantho in the East China Sea[J]. Journal of Zhejiang Ocean University (Natural Science Edition), 2009, 28(3): 292-297,378 (in Chinese).
    [19] Ohtomi J, Yamamoto S. The timing of mating related to ovarian maturation in the open-thelycum Penaeoid Shrimp Solenocera melantho[J]. Nippon Suisan Gakkaishi, 2001, 67(3): 469-474.
    [20] 申欣. 软甲纲动物和星虫动物线粒体基因组特征及分子进化研究[D]. 青岛: 中国科学院研究生院, 2008.
    Shen X. Mitochondrial genomic characters of malacostracans and sipunculans and the molecular evolutionary research based on mitochondrial genomes[D]. Qingdao: Chinese Academy of Sciences, 2008 (in Chinese).
    [21] 邢晶晶. 分子遗传标记及其技术在水产生物中的研究与应用[J]. 水产学杂志, 2002, 15(1): 61-70.
    Xing J J. The types of molecular markers and the research and applications of molecular markers technology on the aquatic creature[J]. Chinese Journal of Fisheries, 2002, 15(1): 61-70 (in Chinese).
    [22] 杨婧, 黄原. 线粒体基因组的高通量测序策略[J]. 生命科学, 2016, 28(1): 112-117.
    Yang J, Huang Y. Strategy of high-throughput sequencing technology in the mitochondrial genome sequencing[J]. Chinese Bulletin of Life Sciences, 2016, 28(1): 112-117 (in Chinese).
    [23] Elmerot C, Arnason U, Gojobori T, et al. The mitochondrial genome of the pufferfish, Fugu rubripes, and ordinal teleostean relationships[J]. Gene, 2002, 295(2): 163-172.
    [24] Gong L, Jiang H, Zhu K H, et al. Large-scale mitochondrial gene rearrangements in the hermit crab Pagurus nigrofascia and phylogenetic analysis of the Anomura[J]. Gene, 2019, 695: 75-83.
    [25] Boore J L. Animal mitochondrial genomes[J]. Nucleic Acids Research, 1999, 27(8): 1767-1780.
    [26] 黄宗国, 林茂. 中国海洋生物图集-第三册, 1-动物界[M]. 北京: 海洋出版社, 2012.
    Huang Z G, Lin M. An illustrated guide to species in China’s seas[M]. Beijing: China Ocean Press, 2012 (in Chinese).
    [27] Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques[J]. Nucleic Acids Research, 1997, 25(22): 4692-4693.
    [28] Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data[J]. Nucleic Acids Research, 2017, 45(4): e18.
    [29] Altschul S F, Madden T L, Schäffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 25(17): 3389-3402.
    [30] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
    [31] Hassanin A, Léger N, Deutsch J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences[J]. Systematic Biology, 2005, 54(2): 277-298.
    [32] Rozas J, Ferrer-Mata A, Sánchez-Delbarrio J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12): 3299-3302.
    [33] Xia X H. DAMBE7: new and improved tools for data analysis in molecular biology and evolution[J]. Molecular Biology and Evolution, 2018, 35(6): 1550-1552.
    [34] Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
    [35] Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61(3): 539-542.
    [36] Posada D. Modeltest: A tool to select the best-fit model of nucleotide substitution. Version 3.7[J]. Available from: darwin. uvigo. es. 2005.
    [37] Nylander J A A. MrModeltest v2. Program distributed by the author[D]. Evolutionary Biology Centre, Uppsala University, 2004.
    [38] Posada D, Crandall K A. MODELTEST: testing the model of DNA substitution[J]. Bioinformatics, 1998, 14(9): 817-818.
    [39] Swofford D L. PAUP. Phylogenetic analysis using parsimony (*and Other Methods). Version 4.0b10[M]. Sunderland: Sinauer Associates, 2002.
    [40] Nguyen L T, Schmidt H A, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268-274.
    [41] Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. ModelFinder: fast model selection for accurate phylogenetic estimates[J]. Nature Methods, 2017, 14(6): 587-589.
    [42] Rambaut A. FigTree-version 1.4. 3, a graphical viewer of phylogenetic trees[EB/OL]. (2017-05-01) [2023-03-01]. http://treebiodacuk/software/figtree, 2017.
    [43] 朱陇强, 朱志煌, 林琪, 等. 长臂虾科线粒体基因组结构与系统进化分析[J]. 中国水产科学, 2021, 28(7): 852-862.
    Zhu L Q, Zhu Z H, Lin Q, et al. Characteristics and phylogenetic analysis of the mitochondrial genome in Palaemonidae[J]. Journal of Fishery Sciences of China, 2021, 28(7): 852-862 (in Chinese).
    [44] 宋文涛, 高祥刚, 李云峰, 等. 双壳贝类线粒体基因组结构的比较[J]. 遗传, 2009, 31(11): 1127-1134.
    Song W T, Gao X G, Li Y F, et al. Comparison of mitochondrial genomes of bivalves[J]. Hereditas, 2009, 31(11): 1127-1134 (in Chinese).
    [45] 申欣. 对虾科线粒体基因组特征及基因差异位点分析[J]. 水产科学, 2010, 29(12): 711-717.
    Shen X. Analysis of mitochondrial genome characteristics and differences in genetic loci in Penaeidae[J]. Fisheries Science, 2010, 29(12): 711-717 (in Chinese).
    [46] 毛智超. 基于线粒体DNA基因序列的5种海洋经济虾类的系统进化分析[D]. 上海: 上海海洋大学, 2016.
    Mao Z C. Phylogenetic analysis of five marine economic shrimps basing on the mtDNA genomes sequence[D]. Shanghai: Shanghai Ocean University, 2016 (in Chinese).
    [47] Nei M, Kumar S. Molecular evolution and Phylogenetics[M]. New York: Oxford University Press, 2000.
    [48] Yang Z H. Computational molecular evolution[M]. New York: Oxford University Press, 2006.
    [49] 申欣, 李晓, 徐启华. 日本鼓虾与鲜明鼓虾线粒体基因组全序列的分析比较[J]. 海洋学报, 2012, 34(5): 147-153.
    Shen X, Li X, Xu Q H. Comparison and analysis of Alpheus japonicus and A. distinguendus complete mitochondrial genome sequences[J]. Acta Oceanologica Sinica, 2012, 34(5): 147-153 (in Chinese).
    [50] 田美, 申欣, 孟学平, 等. 短尾派线粒体基因组特征及基因差异位点分析[J]. 水产科学, 2011, 30(1): 31-37.
    Tian M, Shen X, Meng X P, et al. Analysis of mitochondrial genome characteristics and genetic different loci in Brachyuran[J]. Fisheries Science, 2011, 30(1): 31-37 (in Chinese).
    [51] Shen X, Ren J F, Cui Z X, et al. The complete mitochondrial genomes of two common shrimps (Litopenaeus vannamei and Fenneropenaeus chinensis) and their phylogenomic considerations[J]. Gene, 2007, 403(1-2): 98-109.
    [52] 朱雷宇, 朱志煌, 朱陇强, 等. 龙虾科物种线粒体基因组特征和系统发育分析[J]. 中国水产科学, 2022, 29(4): 525-534.
    Zhu L Y, Zhu Z H, Zhu L Q, et al. Characteristics and phylogenetic analysis of the mitochondrial genome in Palinuridae[J]. Journal of Fishery Sciences of China, 2022, 29(4): 525-534 (in Chinese).
    [53] Haring E, Kruckenhauser L, Gamauf A, et al. The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) indicates an early split in the phylogeny of raptors[J]. Molecular Biology and Evolution, 2001, 18(10): 1892-1904.
    [54] Inoue J G, Miya M, Tsukamoto K, et al. Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for anguilliform families[J]. Journal of Molecular Evolution, 2001, 52(4): 311-320.
    [55] Kong X Y, Dong X L, Zhang Y C, et al. A novel rearrangement in the mitochondrial genome of tongue sole, Cynoglossus semilaevis: control region translocation and a tRNA gene inversion[J]. Genome, 2009, 52(12): 975-984.
    [56] Inoue J G, Miya M, Tsukamoto K, et al. Evolution of the deep-sea gulper eel mitochondrial genomes: large-scale gene rearrangements originated within the eels[J]. Molecular Biology and Evolution, 2003, 20(11): 1917-1924.
    [57] 付晓燕, 陈念, 赵树进. 动物线粒体基因重排[J]. 医学研究生学报, 2009, 22(12): 1320-1323.
    Fu X Y, Chen N, Zhao S J. Rearrangement of animal mitochondrial gene[J]. Journal of Medical Postgraduates, 2009, 22(12): 1320-1323 (in Chinese).
    [58] Burkenroad M D. Natural classification of Dendrobranchiata, with a key to recent genera[M]//Schram F R. Crustacean phylogeny. Marine Biodiversity Center, 1983: 279-290.
    [59] 易啸. 对虾科15种虾类的系统发育分析及DNA条形码研究[D]. 厦门: 厦门大学, 2017.
    Yi X. Phylogeny and DNA barcodes of 15 species in Penaeidae[D]. Xiamen: Xiamen University, 2017 (in Chinese).
    [60] 易啸, 王攀攀, 王军, 等. 基于线粒体COⅠ的DNA条形码在对虾科种类鉴定中的研究[J]. 水产学报, 2018, 42(1): 1-9.
    Yi X, Wang P P, Wang J, et al. The research of COⅠ-based DNA barcoding in Penaeidaes’ identification[J]. Journal of Fisheries of China, 2018, 42(1): 1-9 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙毓蔓,陈健,徐开达,叶莹莹.大管鞭虾线粒体全基因组测定及对虾总科的系统发育[J].水产学报,2025,49(3):039102

复制
分享
文章指标
  • 点击次数:73
  • 下载次数: 100
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-03-22
  • 最后修改日期:2023-07-22
  • 在线发布日期: 2025-03-07
文章二维码