陆海转运应激对两种不同养殖模式下斑石鲷生理功能的影响
作者:
中图分类号:

S 917.4

基金项目:

中国水产科学研究院中央级公益性科研院所基本科研业务费专项(2023TD81);中央引导地方资金(YDZX2022120);国家现代农业产业技术体系专项 (CARS-47)


Effect of transport stress on physiology of spotted knifejaw (Oplegnathus punctatus) reared in different culture systems
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [70]
  • |
  • 相似文献 [3]
  • | | |
  • 文章评论
    摘要:

    目的 为探究两种养殖模式下斑石鲷在陆海转运应激过程中的生理反应特征及响应机制。方法 通过分析血浆皮质醇(Cor)和葡萄糖(Glu)浓度、白细胞(WBC)和红细胞(RBC)数目、血红蛋白含量(Hb)和红细胞压积(Hct)、肝脏和肌肉糖原含量、肝脏超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)、谷丙转氨酶(ALT)和谷草转氨酶(AST)活性、丙二醛(MDA)含量和肝细胞凋亡率,比较了陆基工厂化循环水(RAS)和深水网箱(OSCS)养殖模式下斑石鲷对陆海转运应激的生理反应差异及响应机制。结果 陆海接力运输前,OSCS养殖斑石鲷的RBC数目、Hb含量和Hct显著高于RAS养殖斑石鲷,其他指标间则无显著差异。陆海接力运输过程中,两种养殖模式下斑石鲷Hb含量、血浆Cor和Glu浓度、血浆和肝脏ALT、AST活性、肝脏CAT和GSH-Px活性、MDA含量及肝细胞凋亡率均显著上升,肌糖原含量和肝脏SOD活性无显著变化。此外,OSCS养殖斑石鲷RBC数目、Hb含量、肝脏MDA和肝糖原含量、Glu浓度、血浆和肝脏中ALT和AST、CAT和GSH-Px活性及肝细胞凋亡率的变化比例均显著低于RAS养殖斑石鲷。上述显著变化指标占全部指标的70.59%,且在差异性变化生理指标中,OSCS养殖斑石鲷运输结束后48 h,恢复正常状态,而RAS养殖斑石鲷则需要72 h。结论 在陆海接力运输过程中,OSCS养殖斑石鲷具有更强的抗应激能力和更佳的生理状态。相关数据可为斑石鲷陆海接力高效转运和养殖模式的优化提供理论依据和数据支撑。

    Abstract:

    Standard technologies and models were applied to guarantee the production and supplement of high-quality protein in aquaculture. Recirculating aquaculture systems (RAS) have advantages on the level of intensive use, utilization of water resources, and command of environmental factors, and it was widely used in marine fish aquaculture. However, the higher energy consumption and more serious choices and management in fish. Offshore sea cage systems (OSCS) and offshore aquaculture nets (OANPS) take efficiency advantages of the natural environment to obtain optimal growth performance and flesh quality. Therefore, it is an efficient way to develop offshore aquaculture, promote the high-quality development of fisheries and alleviate the offshore pressure which relies on offshore facilities and pieces of equipment. Most fish find it difficult to resist severe winter in northern of China, and the ingestion and growth will be significantly influenced even if they can tolerate the low temperature. Therefore, it is an efficient way to conduct continuous aquaculture during land-sea relay. The method was applied to most marine fishes, which were cultivated in RAS and transported to OSCS and OANPS. Besides, the new aquaculture model during land-sea relay aimed to promote developments, utilization of natural resources and extension of culture spaces. Oplegnathus punctatus was popular with high economic value and broad prospects. According to previous researchers, transport stress significantly influenced the cortisol and glucose concentration in Ictalurus punctatus, Pelteobagrus fulvidraco, and Thunnus orientalis. Our research group had confirmed that handling stress as the primary stressor would influence the physiology function of O. punctatus. Meanwhile, O. punctatus of OSCS had better growth performance, physiology condition and immunity activity than RAS cultured in OANPS. So, we predicted that they would obtain optimal tolerance to stress after transport to OSCS. The study compared and explained the physiological response mechanism of O. punctatus subjected to transport stress under RAS and OSCS, aiming to explore the physiological response features and mechanisms during land-sea relay under different two kinds of culture models. Plasma cortisol (Cor), glucose (Glu) concentration, white blood cell numbers (WBC)and red blood cell numbers (RBC), hemoglobin (Hb) content, hematocrit (Hct) were analyzed by the automatic hematology analytical method. Hepatic and muscular glycogen content, hepatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), alanine transaminase (ALT), aspartate aminotransferase (AST) activity, malonaldehyde (MDA) content were detected by commercial kits. The hepatocyte apoptosis rate was evaluated using the TUNEL technique with a commercial kit of Fluorescein Tunel Cell (FITC) apoptosis detection. The results showed that RBC numbers, Hb content, and Hct under OSCS were significantly higher than RAS before transportation, whereas other parameters indicated no significant differences under OSCS and RAS. During transportation, plasma Cor and Glu concentration, plasma and hepatic ALT and AST, hepatic CAT and GSH-Px activity, MDA content, and hepatocytes apoptosis significantly increased under two kinds of models, whereas hepatic glycogen was significantly decreased and muscular glycogen and SOD activity had no significant changes during the whole experiment. The rate of changes of RBC number, Hb, hepatic MDA and glycogen content, Glu concentration, plasma and hepatic ALT and AST, CAT, GSH-Px and hepatocytes apoptosis rate in O. punctatus of OSCS was significantly lower than RAS. The above significant parameters accounted for 70.59% of the total indexes. The different changes of physiological indicators would recover after transportation 48 h, while RAS needed 72 h. Simultaneously, O. punctatus under OSCS had better physiological performances and stronger anti-stress characteristics than RAS during transportation and recovery. These findings offer important references and data support to optimize transportation and model during land-sea relay.

    参考文献
    [1] 王峰, 雷霁霖, 高淳仁, 等. 国内外工厂化循环水养殖研究进展[J]. 中国水产科学, 2013, 20(5): 1100-1111.
    Wang F, Lei J L, Gao C R, et al. Review of industrial recirculating aquaculture research at home and abroad[J]. Journal of Fishery Sciences of China, 2013, 20(5): 1100-1111 (in Chinese).
    [2] D’orbcastel E R, Blancheton J P, Belaud A. Water quality and rainbow trout performance in a danish model farm recirculating system: comparison with a flow through system[J]. Aquacultural Engineering, 2009, 40(3): 135-143.
    [3] Jia Y D, Wang Z Y, Li M Y, et al. Altered hepatic glycolysis, lipogenesis, and blood biochemistry of tiger puffer (Takifugu rubripes) under two different culture systems[J]. Aquaculture, 2020, 528: 735532.
    [4] 王裕玉, 徐跑, 张志伟, 等. 不同养殖模式对黑鲷生长、血清生化指标及抗氧化性能的影响[J]. 江苏农业科学, 2020, 48(23): 155-160.
    Wang Y Y, Xu P, Zhang Z W, et al. Effects of culture models on growth, serum biochemical indices and antioxidant properties of juvenile black sea bream (Acanthopagrus schlegelii)[J]. Jiangsu Agricultural Sciences, 2020, 48(23): 155-160 (in Chinese).
    [5] 朱峰. 大黄鱼工厂化循环水养殖技术研究[D]. 厦门: 集美大学, 2015.
    Zhu F. Studies on the techniques for culturing pseudosciaena crocea in industrial recirculating aquaculture systems[D]. Xiamen: Jimei University, 2015 (in Chinese).
    [6] 周飘苹, 金敏, 吴文俊, 等. 不同养殖模式、投喂不同饵料及不同品系大黄鱼营养成分比较[J]. 动物营养学报, 2014, 26(4): 969-980.
    Zhou P P, Jin M, Wu W J, et al. Comparison of nutrient components of large yellow croaker (Pseudosciaena crocea Richardson) cultured in different modes, fed different feeds and from different strains[J]. Chinese Journal of Animal Nutrition, 2014, 26(4): 969-980 (in Chinese).
    [7] 王枫林, 高云涛, 高云红, 等. 斑石鲷陆海接力养殖初步研究[J]. 渔业现代化, 2022, 49(4): 8-14.
    Wang F L, Gao Y T, Gao Y H, et al. Preliminary study on land-sea alternate aquaculture of spotted knifejaw Oplegnathus punctatus[J]. Fishery Modernization, 2022, 49(4): 8-14 (in Chinese).
    [8] 李莉, 王雪, 潘雷, 等. 斑点鳟陆海接力养殖初步研究[J]. 渔业现代化, 2017, 44(6): 9-12,18.
    Li L, Wang X, Pan L, et al. Preliminary study on land-sea relay aquaculture of Oncorhynchus mykiss[J]. Fishery Modernization, 2017, 44(6): 9-12,18 (in Chinese).
    [9] 刘超. 四种海水鱼陆海接力养殖设施与工艺的试验研究[D]. 上海: 上海海洋大学, 2015.
    Liu C. Research on land-sea relay mariculture facilities and technology for four species of marine fishes[D]. Shanghai: Shanghai Ocean Univevrsity, 2015 (in Chinese).
    [10] 姚恩长. 接力养殖模式构建——以浙江大黄鱼产业为例[D]. 舟山: 浙江海洋学院, 2013.
    Yao E C. Relay breeding mode build—example to the large yellow croaker industry in Zhejiang Province[D]. Zhoushan: Zhejiang Ocean University, 2013 (in Chinese).
    [11] 麦康森, 徐皓, 薛长湖, 等. 开拓我国深远海养殖新空间的战略研究[J]. 中国工程科学, 2016, 18(3): 90-95.
    Mai K S, Xu H, Xue C H, et al. Study on strategies for developing offshore as the new spaces for mariculture in China[J]. Strategic Study of CAE, 2016, 18(3): 90-95 (in Chinese).
    [12] Wang J T, Huang R X, Han T, et al. Dietary protein requirement of juvenile spotted knifejaw Oplegnathus punctatus[J]. Aquaculture Reports, 2021, 21: 100874.
    [13] 黄滨, 关长涛, 梁友, 等. 北方海域云纹石斑鱼的陆海接力高效养殖试验[J]. 渔业现代化, 2013, 40(2): 1-5.
    Huang B, Guan C T, Liang Y, et al. The land-sea relay efficient breeding experiment for Epinephelus moara in the northern sea area[J]. Fishery Modernization, 2013, 40(2): 1-5 (in Chinese).
    [14] Hasan M, Bart A N. Effects of capture, loading density and transport stress on the mortality, physiological responses, bacterial density and growth of rohu Labeo rohita fingerlings[J]. Fish Physiology and Biochemistry, 2007, 33(3): 241-248.
    [15] Vanderzwalmen M, McNeill J, Delieuvin D, et al. Monitoring water quality changes and ornamental fish behaviour during commercial transport[J]. Aquaculture, 2021, 531: 735860.
    [16] Refaey M M, Li D P. Transport stress changes blood biochemistry, antioxidant defense system, and hepatic HSPs mRNA expressions of channel catfish Ictalurus punctatus[J]. Fronties in Physiology, 2018, 9: 1628.
    [17] 田兴. 运输应激对黄颡鱼和斑点叉尾鮰血液生化指标和肌肉品质的影响[D]. 武汉: 华中农业大学, 2016.
    Tian X. The effect of transport stress on flesh quality and blood biochemical parameters of yellow catfish Pelteobagrus fulvidraco and channel catfish Ictalurus punctatus[D]. Wuhan: Huazhong Agricultural Univevrsity, 2016 (in Chinese).
    [18] Honryo T, Oakada T, Kawahara M, et al. Estimated time for recovery from transportation stress and starvation in juvenile Pacific bluefin tuna Thunnus orientalis[J]. Aquaculture, 2018, 484: 175-183.
    [19] 李勇男. 水中添加维生素C缓解鲤鱼运输应激的研究[D]. 无锡: 江南大学, 2016.
    Li Y N. Study on alleviation of transport stress in Cyprinus carpio by adding vitamin C to water[D]. Wuxi: Jiangnan University, 2016 (in Chinese).
    [20] 张宇雷, 管崇武. 船载振动胁迫对斑石鲷影响实验研究[J]. 渔业现代化, 2017, 44(3): 29-34.
    Zhang Y L, Guan C W. Experimental study on effects of ship vibration stress on Oplegnathus punctatus[J]. Fishery Modernization, 2017, 44(3): 29-34 (in Chinese).
    [21] 张宇雷, 管崇武. 船载摇摆胁迫对斑石鲷血液生化指标的影响研究[J]. 中国农学通报, 2017, 33(29): 145-149.
    Zhang Y L, Guan C W. Ship rocking affecting serum biochemical indexes of spotted knifejaw (Oplegnathus punctatus)[J]. Chinese Agricultural Science Bulletin, 2017, 33(29): 145-149 (in Chinese).
    [22] 刘奇奇, 温久福, 区又君, 等. 运输胁迫对四指马鲅幼鱼肝脏、鳃和脾脏组织结构的影响[J]. 南方农业学报, 2017, 48(9): 1708-1714.
    Liu Q Q, Wen J F, Ou Y J, et al. Effects of transport stress on liver, gill and spleen tissue structure of juvenile Eleutheronema tetradactylum[J]. Journal of Southern Agriculture, 2017, 48(9): 1708-1714 (in Chinese).
    [23] Xie T, Gao Y T, Qin H Y, et al. Physiological response of spotted knifejaw (Oplegnathus punctatus) during transportation in offshore aquaculture net pen[J]. Aquaculture, 2023, 563: 739029.
    [24] 宋协法, 程亚伟, 邢道超, 等. 温度、体重对斑石鲷耗氧率、排氨率的影响及昼夜节律变化[J]. 中国海洋大学学报, 2017, 47(9): 21-29.
    Song X F, Cheng Y W, Xing D C, et al. Influences of temperature and weight on oxygen consumption rate and ammonium excretion of Oplegnathus punctatus and their circadian rhythms[J]. Periodical of Ocean University of China, 2017, 47(9): 21-29 (in Chinese).
    [25] Jia Y D, Gao Y T, Gao Y H, et al. Growth performance, hematological and biochemical parameters, and hepatic antioxidant status of spotted knifejaw Oplegnathus punctatus in an offshore aquaculture net pen[J]. Aquaculture, 2021, 541: 736761.
    [26] Wang F L, Gao Y T, Guan C T, et al. Growth performance, hematology, antioxidant capacity, immunity, and intestinal microbiota of spotted knifejaw (Oplegnathus punctatus) reared in recirculating aquaculture system and offshore aquaculture net pen[J]. Aquaculture, 2023, 562: 738816.
    [27] Witeska M, Kondera E, Ługowska K, et al. Hematological methods in fish-not only for beginners[J]. Aquaculture, 2022, 547: 737498.
    [28] Dias M K R, Yoshioka E T O, Rodriguez A F R, et al. Growth and hematological and immunological responses of Arapaima gigas fed diets supplemented with immunostimulant based on Saccharomyces cerevisiae and subjected to handling stress[J]. Aquaculture Reports, 2020, 17: 100335.
    [29] 陈永祥, 肖玲远, 严太明, 等. 野生和养殖裂腹鱼血液学指标的比较研究[J]. 水生生物学报, 2009, 33(5): 905-910.
    Chen Y X, Xiao L Y, Yan T M, et al. Hematological of wild and cultured schizothoracin fishes[J]. Acta Hydrobiologica Sinica, 2009, 33(5): 905-910 (in Chinese).
    [30] De Oliveira Feitosa K C, Povh J A, De Abreu J S. Physiological responses of pacu (Piaractus mesopotamicus) treated with homeopathic product and submitted to transport stress[J]. Homeopathy, 2013, 102(4): 268-273.
    [31] Boaventura T P, Souza C F, Ferreira A L, et al. The use of Ocimum gratissimum L. essential oil during the transport of Lophiosilurus alexandri: water quality, hematology, blood biochemistry and oxidative stress[J]. Aquaculture, 2021, 531: 735964.
    [32] Pakhira C, Nagesh T S, Abraham T J, et al. Stress responses in rohu, Labeo rohita transported at different densities[J]. Aquaculture Reports, 2015, 2: 39-45.
    [33] Tewary A, Patra B C. Oral administration of baker's yeast (Saccharomyces cerevisiae) acts as a growth promoter and immunomodulator in Labeo rohita (Ham.)[J]. Journal of Aquaculture Research & Development, 2011, 2(1): 109.
    [34] Driedzic W R. Low plasma glucose limits glucose metabolism by RBCs and heart in some species of teleosts[J]. Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology, 2018, 224: 204-209.
    [35] Martins C L, Walker T I, Reina R D. Stress-related physiological changes and post-release survival of elephant fish (Callorhinchus milii) after longlining, gillnetting, angling and handling in a controlled setting[J]. Fisheries Research, 2018, 204: 116-124.
    [36] Santos E L R, Rezende F P, Moron S E. Stress-related physiological and histological responses of tambaqui (Colossoma macropomum) to transportation in water with tea tree and clove essential oil anesthetics[J]. Aquaculture, 2020, 523: 735164.
    [37] Barcellos L J G, Marqueze A, Trapp M, et al. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundiá Rhamdia quelen[J]. Aquaculture, 2010, 300(1-4): 231-236.
    [38] 陈德举, 强俊, 陶易凡, 等. 不同溶氧水平对吉富罗非鱼幼鱼生长、血液生化、脂肪酸组成及其抗海豚链球菌病的影响[J]. 淡水渔业, 2019, 49(4): 83-89.
    Chen D J, Qiang J, Tao Y F, et al. Effects of different dissolved oxygen levels on the growth, blood biochemistry, fatty acid composition and against Streptococcus iniae infection of GIFT juvenile (Oreochromis niloticus)[J]. Freshwater Fisheries, 2019, 49(4): 83-89 (in Chinese).
    [39] López-Patiño M A, Hernández-Pérez J, Gesto M, et al. Short-term time course of liver metabolic response to acute handling stress in rainbow trout, Oncorhynchus mykiss[J]. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 2014, 168: 40-49.
    [40] 刘梅, 宓国强, 郭建林, 等. 池塘内循环流水养殖模式对黄颡鱼生长性能、形体指标、血清生化指标及肌肉营养成分的影响[J]. 动物营养学报, 2019, 31(4): 1704-1717.
    Liu M, Mi G Q, Guo J L, et al. Effects of internal-circulation pond aquaculture model on growth performance, morphological indices, serum biochemical indices and muscle nutritional components of Pelteobagrus fulvidraco[J]. Chinese Journal of Animal Nutrition, 2019, 31(4): 1704-1717 (in Chinese).
    [41] Liu F, Qu Y K, Wang A M, et al. Effects of carotenoids on the growth performance, biochemical parameters, immune responses and disease resistance of yellow catfish (Pelteobagrus fulvidraco) under high-temperature stress[J]. Aquaculture, 2019, 503: 293-303.
    [42] Hong J W, Chen X, Liu S X, et al. Impact of fish density on water quality and physiological response of golden pompano (Trachinotus ovatus) flingerlings during transportation[J]. Aquaculture, 2019, 507: 260-265.
    [43] Refaey M M, Tian X, Tang R, et al. Changes in physiological responses, muscular composition and flesh quality of channel catfish Ictalurus punctatus suffering from transport stress[J]. Aquaculture, 2017, 478: 9-15.
    [44] Hoseini S M, Yousefi M, Hoseinifar S H, et al. Antioxidant, enzymatic and hematological responses of common carp (Cyprinus carpio) fed with myrcene- or menthol-supplemented diets and exposed to ambient ammonia[J]. Aquaculture, 2019, 506: 246-255.
    [45] 叶桂煊, 王禹, 李翔, 等. 不同养殖环境中的中华绒螯蟹组织抗氧化剂水平和抗氧化酶活力[J]. 河北渔业, 2015, 43(10): 1-4.
    Ye G X, Wang Y, Li X, et al. The antioxidant levels and antioxidant enzyme activity in the tissues of Chinese mitten crab (Eriocheir sinensis) stocked in the different culture environments[J]. Hebei Fisheries, 2015, 43(10): 1-4 (in Chinese).
    [46] 景琦琦. 不同养殖模式下红鳍东方鲀生长、血液生理及抗逆能力研究[D]. 泰安: 山东农业大学, 2018.
    Jing Q Q. The growth performance, hematological physiology and stress resistance of tiger pufferfish (Takifugu rubripes) under different culture system[D]. Tai’an: Shandong Agricultural University, 2018 (in Chinese).
    [47] Chang C H, Wang Y C, Lee T H. Hypothermal stress-induced salinity-dependent oxidative stress and apoptosis in the livers of euryhaline milkfish, Chanos chanos[J]. Aquaculture, 2021, 534: 736280.
    [48] Karatas T, Onalan S, Yildirim S. Effects of prolonged fasting on levels of metabolites, oxidative stress, immune-related gene expression, histopathology, and DNA damage in the liver and muscle tissues of rainbow trout (Oncorhynchus mykiss)[J]. Fish Physiology and Biochemistry, 2021, 47(4): 1119-1132.
    [49] Xie L X, Chen S Q, Yao C R, et al. Nitrite induces endoplasmic reticulum stress and associates apoptosis of liver cells in grass carp (Ctenopharyngodon idella)[J]. Aquaculture, 2019, 507: 275-281.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢婷,王枫林,段勇杰,程浩,关长涛,闫冬春,贾玉东.陆海转运应激对两种不同养殖模式下斑石鲷生理功能的影响[J].水产学报,2025,49(2):029104

复制
分享
文章指标
  • 点击次数:28
  • 下载次数: 65
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-03-10
  • 最后修改日期:2023-04-20
  • 在线发布日期: 2025-03-07
文章二维码