沙鳅科鱼类的起源演化
作者:
中图分类号:

P 935;S 917.4

基金项目:

国家自然科学基金 (32170457);内江师范学院创新团队项目 (2021TD03)


Origin and evolution of botiid loaches (Teleostei: Cypriniformes: Botiidae)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    目的 厘清沙鳅科鱼类的系统发育关系和起源演化。方法 本实验通过PCR扩增和公共数据库搜集,共获得240条序列,涵盖了8属20种沙鳅科鱼类,采用2个线粒体基因 (COⅠ、Cytb)和3个核基因 (IRBPRAG1和RH)联合的方法,进行了系统发育树重建、分化时间和生物地理学分析。结果 基于不同数据集构建的最大似然树 (Maximum Likelihood, ML)和贝叶斯树 (Bayesian Inference, BI)的拓扑结构一致,沙鳅科及各属均为单系类群,沙鳅科分为沙鳅亚科和薄鳅亚科2大支,其中,沙鳅亚科包括华鳅属、安巴鳅属、安彦鳅属、缨须鳅属、沙鳅属和色鳅属,薄鳅亚科包括副沙鳅属和薄鳅属,且基于不同数据集构建的ML和BI树均有较高的支持度。结论 沙鳅科鱼类在渐新世[约28.85 百万年前]起源于东南亚地区,中新世 (约24.15 百万年前)各属开始分化,中新世和上新世 (约17.17 百万年—3.79 百万年前)属内种的分化明显;随着喜马拉雅山脉的运动,沙鳅科鱼类从东南亚地区向西和向北扩散和演化。其中,沙鳅属向西进入南亚地区,薄鳅属、副沙鳅属和华鳅属向北进入我国长江、珠江流域,这说明沙鳅科鱼类的物种分化和喜马拉雅山脉的运动有着密切的关系。本研究为进一步研究鳅超科鱼类起源演化提供参考资料。

    Abstract:

    Botiidae (Actinopterygii: Cypriniformes) is a group of small and medium-sized fish with eight genera and 62 species, which is widely distributed in Southeast Asia, East Asia and South Asia. A total of 240 sequences were obtained by PCR amplification and downloading from GenBank, covering eight genera and 20 species of Botiidae to clarify the phylogenetic relationships and the origin evolution of the family Botiidae. In this study, phylogenetic tree reconstruction, divergence time estimation and biogeographic analysis were performed using the combination of two mitochondrial genes (CO I, Cytb) and three nuclear genes (IRBP, RAG1, RH). The topology of Maximum Likehood (ML) and Bayesian inference (BI) trees based on different datasets consistently showed that the family Botiidae was a monophyletic taxa and all genera were also monophyletic taxa. The family Botiidae was divided into two major brances of the subfamily Botiinae and Leptobotiinae, of which Botiinae included Sinibotia, Ambastaia, Yasuhikotakia, Syncrossus, Botia and Chromobotia and Leptobotiinae included Parabotia and Leptobotia. The above results were well supported. The results of divergence time and geographic ancestral reconstruction indicated that the family Botiidae originated in Southeast Asia in the Early Oligocene (about 28.85 million years ago), and the genera began to diverge in the Miocene (about 24.25 million years ago), with obvious divergence of species within genera in the Late Miocene and Pliocene (about 17.17-3.79 million years ago). With the movement of the Himalayas, the family Botiidae spread and evolved westward and northward from Southeast Asia, among which the genus Botia entered the South Asian region westward, and the genera of Leptobotia, Parabotia, and Sinibotia entered the Yangtze River and Pearl River basin in China to the north. The differentiation of the family Botiidae was closely related to the movement of the Himalayas. This research has important implications for the phylogenetic relationships and evolutionary processes in the origin of Botiidae.

    参考文献
    [1] 陈景星, 朱松泉. 鳅科鱼类亚科的划分及其宗系发生的相互关系[J]. 动物分类学报, 1984, 9(2): 201-208.
    Chen J X, Zhu S Q. Phylogenetic relationships of the subfamilies in the loach family cobitidae (Pisces)[J]. Acta Zootaxonomica Sinica, 1984, 9(2): 201-208 (in Chinese).
    [2] 陈景星. 中国沙鳅亚科鱼类系统分类的研究[J]. 动物学研究, 1980, 1(1): 3-20.
    Chen J X. A study on the classification of the Botoid fishes of China[J]. Zoological Research, 1980, 1(1): 3-20 (in Chinese).
    [3] Froese R, Pauly D. FishBase[EB/OL]. (2021-10-01)[2022-01-01]. http://www.fishbase.org.
    [4] Mueller R L. Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis[J]. Systematic Biology, 2006, 55(2): 289-300,
    [5] Larizza A, Pesole G, Reyes A, et al. Lineage specificity of the evolutionary dynamics of the mtDNA D-loop region in rodents[J]. Journal of Molecular Evolution, 2002, 54(2): 145-155,
    [6] Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome engineering[J]. Nature Reviews Genetics, 2022, 23(4): 199-214,
    [7] Zhang L N, Ma P F, Zhang Y X, et al. Using nuclear loci and allelic variation to disentangle the phylogeny of Phyllostachys (Poaceae, Bambusoideae)[J]. Molecular Phylogenetics and Evolution, 2019, 137: 222-235,
    [8] Hodel R G J, Zimmer E, Wen J. A phylogenomic approach resolves the backbone of Prunus (Rosaceae) and identifies signals of hybridization and allopolyploidy[J]. Molecular Phylogenetics and Evolution, 2021, 160: 107118,
    [9] Gippner S, Travers S L, Scherz M D, et al. A comprehensive phylogeny of dwarf geckos of the genus Lygodactylus, with insights into their systematics and morphological variation[J]. Molecular Phylogenetics and Evolution, 2021, 165: 107311,
    [10] Rodríguez S M, Amin O M, Heckmann R A, et al. Phylogeny and life cycles of the archiacanthocephala with a note on the validity of Mediorhynchus gallinarum[J]. Acta Parasitologica, 2022, 67(1): 369-379,
    [11] Bogarín D, Pérez-Escobar O A, Groenenberg D, et al. Anchored hybrid enrichment generated nuclear, plastid and mitochondrial markers resolve the Lepanthes horrida (Orchidaceae: Pleurothallidinae) species complex[J]. Molecular Phylogenetics and Evolution, 2018, 129: 27-47,
    [12] Fang P W. Study on botoid fishes of China[J]. Sinensia, 1936, 7: 1-49.
    [13] Nalbant T T. Sixty million years of evolution. Part one: family Botiidae (Pisces: Ostariophysi: Cobitoidea)[J]. Travaux du Muséum National d’ Histoire Naturelle “Grigore Antipa”, 2002, 44: 309-333.
    [14] Kottelat M. Botia kubotai, a new species of loach (Teleostei: Cobitidae) from the Ataran River basin (Myanmar), with comments on botiine nomenclature and diagnosis of a new genus[J]. Zootaxa, 2004, 401(1): 1-18,
    [15] Sember A, Bohlen J, Šlechtová V, et al. Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae)[J]. PLoS One, 2018, 13(3): e0195054,
    [16] Šlechtová V, Bohlen J, Freyhof J, et al. Molecular phylogeny of the southeast Asian freshwater fish family Botiidae (Teleostei: Cobitoidea) and the origin of polyploidy in their evolution[J]. Molecular Phylogenetics and Evolution, 2006, 39(2): 529-541,
    [17] 广西壮族自治区水产研究所, 中国科学院动物研究所. 广西淡水鱼类志[M]. 第2版. 南宁: 广西人民出版社, 2006.
    Guangxi Zhuang Autonomous Region Fisheries Research Institute, Institute of Zoology, Chinese Academy of Sciences. Freshwater fishes of Guangxi, China[M]. 2nd ed. Nanning: Guangxi People's Publishing House, 2006 (in Chinese).
    [18] 郑慈英. 珠江鱼类志[M]. 北京: 科学出版社, 1989.
    Zheng C Y. The fishes of the Pearl River[M]. Beijing: Science Press, 1989 (in Chinese).
    [19] 农牧渔业部水产局, 中国科学院水生生物研究所, 上海自然博物馆. 中国淡水鱼类原色图集 (第二集)[M]. 上海: 上海科学技术出版社, 1988.
    Fisheries Bureau of the Ministry of Agriculture, Animal Husbandry and Fisheries, Institute of Hydrobiology, Chinese Academy of Sciences, Shanghai Natural History Museum. The freshwater fishes of China in coloured illustrations (2nd ed.)[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1988 (in Chinese).
    [20] 农业部水产司, 中国科学院水生生物研究所. 中国淡水鱼类原色图集 (第三集)[M]. 上海: 上海科学技术出版社, 1993.
    Department of Fisheries, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences. The freshwater fishes of China in coloured illustrations (3rd ed.)[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1993 (in Chinese).
    [21] 伍献文, 陈宜瑜, 陈湘粦, 等. 鲤亚目鱼类分科的系统和科间系统发育的相互关系[J]. 中国科学, 1981(3): 369-376.
    Wu X W, Chen Y Y, Chen X L, et al. Phylogenetic and interfamily phylogenetic interrelationships in the subfamily Cypriniformes[J]. Science China, 1981(3): 369-376 (in Chinese).
    [22] Siebert D J. Interrelationships among families of the order Cypriniformes (Teleostei)[D]. New York: City University of New York, 1987.
    [23] 彭作刚. 欧亚大陆鲇形目鱼类系统发育与骨鳔下区鱼类分化时间估计及其起源与演化过程研究[D]. 武汉: 中国科学院研究生院(水生生物研究所), 2005.
    Peng Z G. Phylogenetic relationships of Eurasian catfishes (Otocephala: Siluriformes) and divergence time estimates for major otocephalan clades[D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 2005 (in Chinese).
    [24] Ward R D, Zemlak T S, Innes B H, et al. DNA barcoding Australia’s fish species[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1462): 1847-1857,
    [25] Xiao W H, Zhang Y P, Liu H Z. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): Taxonomy, biogeography, and coevolution of a special group restricted in east Asia[J]. Molecular Phylogenetics and Evolution, 2001, 18(2): 163-173,
    [26] Liu S Q, Mayden R L, Zhang J B, et al. Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution[J]. Gene, 2012, 508(1): 60-72,
    [27] Chen W J, Miya M, Saitoh K, et al. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing tree of life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a case study[J]. Gene, 2008, 423(2): 125-134,
    [28] 闫咏柳. 高原鳅属鱼类(鲤形目; 条鳅科)洞穴类群的起源演化研究[D]. 重庆: 西南大学, 2017.
    Yan Y L. The origin and evolution of cave-dwelling group of Triplophysa fishes (Teleostei, Cypriniformes, Nemacheilidae)[D]. Chongqing: Southwest University, 2017 (in Chinese).
    [29] Katoh K, Standley D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780.
    [30] Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis[J]. Molecular Biology and Evolution, 2000, 17(4): 540-552,
    [31] Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549,
    [32] Zhang D, Gao F L, Jakovlić I, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies[J]. Molecular Ecology Resources, 2020, 20(1): 348-355,
    [33] Xia X H. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution[J]. Molecular Biology and Evolution, 2013, 30(7): 1720-1728,
    [34] Lanfear R, Frandsen P B, Wright A M, et al. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses[J]. Molecular Biology and Evolution, 2017, 34(3): 772-773,
    [35] Stamatakis A, Aberer A J, Goll C, et al. RAxML-Light: a tool for computing terabyte phylogenies[J]. Bioinformatics, 2012, 28(15): 2064-2066,
    [36] Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61(3): 539-542,
    [37] Bouckaert R, Heled J, Kühnert D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis[J]. PLoS Computational Biology, 2014, 10(4): e1003537,
    [38] 周家健. 山东山旺中中新世鳅科化石[J]. 古脊椎动物学报, 1992, 30(1): 71-76,
    Zhou J J. A new cobitid from the middle Miocene of Shanwang, Shandong[J]. Vertebrata Palasiatica, 1992, 30(1): 71-76,
    [39] Chen G J, Liao W, Lei X Q. First fossil cobitid (Teleostei: Cypriniformes) from Early-Middle Oligocene deposits of South China[J]. Vertebrata Palasiatica, 2015, 53(4): 299-309,
    [40] Rambaut A, Drummond A J, Xie D, et al. Posterior summarization in Bayesian phylogenetics using tracer 1.7[J]. Systematic Biology, 2018, 67(5): 901-904,
    [41] Yu Y, Blair C, He X J. RASP 4: ancestral state reconstruction tool for multiple genes and characters[J]. Molecular Biology and Evolution, 2020, 37(2): 604-606,
    [42] Ree R H, Smith S A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis[J]. Systematic Biology, 2008, 57(1): 4-14,
    [43] Ronquist F. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography[J]. Systematic Biology, 1997, 46(1): 195-203,
    [44] Landis M J, Matzke N J, Moore B R, et al. Bayesian analysis of biogeography when the number of areas is large[J]. Systematic Biology, 2013, 62(6): 789-804,
    [45] 唐琼英, 刘焕章, 杨秀平, 等. 沙鳅亚科鱼类线粒体DNA控制区结构分析及系统发育关系的研究[J]. 水生生物学报, 2005, 29(6): 645-653.
    Tang Q Y, Liu H Z, Yang X P, et al. Studies on the structure of the mitochondrial DNA control region and phylogenetic relationships of the subfamily Botiinae[J]. Acta Hydrobiologica Sinica, 2005, 29(6): 645-653 (in Chinese).
    [46] 毛云涛, 甘小妮, 王绪祯. 基于线粒体CO Ⅰ 基因的沙鳅亚科鱼类DNA条形码及其分子系统发育研究[J]. 水生生物学报, 2014, 38(4): 737-744.
    Mao Y T, Gan X N, Wang X Z. DNA barcodes and molecular phylogeny of Botiinae fishes based on the mitochondrial CO Ⅰ gene[J]. Acta Hydrobiologica Sinica, 2014, 38(4): 737-744 (in Chinese).
    [47] Suzuki A, Taki Y. Tetraploidization in the cobitid subfamily Botinae (Pisces, Cypriniformes)[J]. Cytobios, 1996, 85(343): 229-245.
    [48] 黄燕. 长江上游特有鱼类DNA条形码研究[D]. 重庆: 西南大学, 2014.
    Huang Y. DNA barcoding of the endemic fishes from the upper Yangtze River Basin[D]. Chongqing: Southwest University, 2014 (in Chinese).
    [49] Wang Y, Shen Y J, Feng C G, et al. Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude[J]. Scientific Reports, 2016, 6: 29690,
    [50] 张兰生, 方修琦. 中国古地理: 中国自然环境的形成[M]. 北京: 科学出版社, 2012.
    Zhang L S, Fang X Q. Chinese paleogeography: the formation of China's natural environment[M]. Beijing: Science Press, 2012 (in Chinese).
    [51] 崔之久, 高全洲, 刘耕年, 等. 夷平面、古岩溶与青藏高原隆升[J]. 中国科学(D辑), 1996, 26(4): 378-386.
    Cui Z J, Gao Q Z, Liu K N, et al. Ebony planes, ancient karst and uplift of the Tibetan Plateau[J]. Chinese Science (Series D: Earth Sciences), 1996, 26(4): 378-386 (in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐荣荣,刘世英,王永明,李燕平,谢碧文,彭作刚.沙鳅科鱼类的起源演化[J].水产学报,2025,49(2):029116

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-02
  • 最后修改日期:2022-11-21
  • 在线发布日期: 2025-03-07
文章二维码