基于eDNA技术的舟山近海中国团扇鳐定性与定量分析
作者:
中图分类号:

S 932.4

基金项目:

国家自然科学基金(41806180, 32002389);浙江省重点研发计划(2021C02047)


Qualitative and quantitative analysis of Platyrhina sinensis based on eDNA methods in Zhoushan offshore
Author:
Fund Project:

the National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [57]
  • |
  • 相似文献 [11]
  • | | |
  • 文章评论
    摘要:

    为探讨环境DNA (environmental DNA, eDNA)技术用于中国团扇鳐监测方面的可行性,同时开展基于eDNA技术的舟山近海中国团扇鳐定性与定量分析。本实验将中国团扇鳐与其同属汤氏团扇鳐COI基因片段序列进行比较分析,使用Primer Express 3.0软件设计中国团扇鳐特异性引物与TaqMan探针。在舟山朱家尖近海设计了A、B、C共3个定置网调查站位,定期收集中国团扇鳐样品。于2017年12月19日、2018年4月13日和2018年7月14日分别采集水样(站位A、B1、B2、C1、C2、D),开展eDNA微滴式数字PCR(droplet digital PCR, ddPCR)检测,并将检测结果与水温和采样点进行差异显著性分析。结果显示,不同站位、不同时间的中国团扇鳐eDNA浓度不同,水样采集点对中国团扇鳐eDNA浓度的影响极显著,不同采样点eDNA在不同季节存在极显著差异。研究表明,eDNA检测技术灵敏度高,水温、底质和水深对中国团扇鳐的分布皆有影响。研究结果为其他海域的中国团扇鳐eDNA追踪监测奠定了基础。

    Abstract:

    Environmental DNA (eDNA) is the general term of DNA released by organisms in ice, soil, air, water, sediment and other environments, which has been widely used in field investigation of aquatic biological resources in recent years. Platyrhina sinensis is mainly distributed in the western area of the North Pacific Ocean, and the coastal area of Zhoushan may be the northern limit of its distribution. In order to explore the feasibility of eDNA technology in the detection of P. sinensis, the qualitative and quantitative detection of P. sinensis in Zhoushan offshore was carried out based on eDNA technology at the same time. In this study, the COI gene sequences of P. sinensis and Platyrhina tangi were compared and analyzed. Primer Express 3.0 software was used to design specific primers and TaqMan probe of P. sinensis. Three fixed net survey stations A, B and C were designed in Zhujiajian offshore, Zhoushan, and samples of P. sinensis were collected regularly. Water samples (stations A, B1, B2, C1, C2 and D) were collected on December 19, 2017, April 14, 2018 and July 14, 2018, respectively, and eDNA droplet digital PCR detection was carried out. Significant difference analysis was conducted between eDNA detection results and water temperature and sampling sites. The results showed that: the concentrations of eDNA of P. sinensis were different at different stations and at different times. The effects of water sampling sites on eDNA concentration of P. sinensis were significant, and there were significant differences in eDNA at different sampling sites in different seasons. This study showed that eDNA detection was sensitive. Water temperature, water depth and substrate quality all affected the distribution of P. sinensis. The results of this study lay a foundation for eDNA tracking and monitoring of P. sinensis in other sea areas.

    参考文献
    [1] Stewart K A. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA[J]. Biodiversity and Conservation, 2019, 28(5): 983-1001
    [2] Jerde C L, Mahon A R, Chadderton W L, et al. “Sight-unseen” detection of rare aquatic species using environmental DNA[J]. Conservation Letters, 2011, 4(2): 150-157
    [3] Yamamoto S, Masuda R, Sato Y, et al. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea[J]. Scientific Reports, 2017, 7: 40368
    [4] Smart A S, Weeks A R, Rooyen A R, et al. Assessing the cost-efficiency of environmental DNA sampling[J]. Methods in Ecology and Evolution, 2016, 7(11): 1291-1298
    [5] Schadewell Y, Adams C I M. Forensics meets ecology – environmental DNA offers new capabilities for marine ecosystem and fisheries research[J]. Frontiers in Marine Science, 2021, 8: 668822
    [6] Hansen B K, Bekkevold D, Clausen L W, et al. The sceptical optimist: Challenges and perspectives for the application of environmental DNA in marine fisheries[J]. Fish and Fisheries, 2018, 19(5): 751-768
    [7] Parsons K M, Everett M, Dahlheim M, et al. Water, water everywhere: Environmental DNA can unlock population structure in elusive marine species[J]. Royal Society Open Science, 2018, 5(8): 180537
    [8] Goutte A, Molbert N, Guérin S, et al. Monitoring freshwater fish communities in large rivers using environmental DNA metabarcoding and a long-term electrofishing survey[J]. Journal of Fish Biology, 2020, 97(2): 444-452
    [9] Wang X Y, Lu G Q, Zhao L L, et al. Assessment of fishery resources using environmental DNA: the large yellow croaker (Larimichthys crocea) in the East China Sea[J]. Fisheries Research, 2021, 235: 105813
    [10] Wang X Y, Zhang H B, Lu G Q, et al. Detection of an invasive species through an environmental DNA approach: The example of the red drum Sciaenops ocellatus in the East China Sea[J]. Science of the Total Environment, 2022, 815: 152865
    [11] Wang X Y, Lu G Q, Zhao L L, et al. Assessment of fishery resources using environmental DNA: small yellow croaker (Larimichthys polyactis) in East China Sea[J]. PLoS One, 2020, 15(12): e0244495
    [12] Wilcox T M, Young M K, McKelvey K S, et al. Fine-scale environmental DNA sampling reveals climate-mediated interactions between native and invasive trout species[J]. Ecosphere, 2018, 9(11): e02500
    [13] Sigsgaard E E, Nielsen I B, Carl H, et al. Seawater environmental DNA reflects seasonality of a coastal fish community[J]. Marine Biology, 2017, 164(6): 128
    [14] Bylemans J, Gleeson D M, Duncan R P, et al. A performance evaluation of targeted eDNA and eDNA metabarcoding analyses for freshwater fishes[J]. Environmental DNA, 2019, 1(4): 402-414
    [15] Harper L R, Lawson Handley L, Hahn C, et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus)[J]. Ecology and Evolution, 2018, 8(12): 6330-6341
    [16] Brys R, Halfmaerten D, Neyrinck S, et al. Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis)[J]. Journal of Fish Biology, 2021, 98(2): 399-414
    [17] McKee A M, Spear S F, Pierson T W. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples[J]. Biological Conservation, 2015, 183: 70-76
    [18] Doi H, Akahara T, Minamoto T, et al. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species[J]. Environmental Science and Technology, 2015, 49(9): 5601-5608
    [19] Mauvisseau Q, Davy-Bowker J, Bulling M, et al. Combining ddPCR and environmental DNA to improve detection capabilities of a critically endangered freshwater invertebrate[J]. Scientific Reports, 2019, 9(1): 14064
    [20] Wood S A, Pochon X, Laroche O, et al. A comparison of droplet digital polymerase chain reaction (PCR), quantitative PCR and metabarcoding for species-specific detection in environmental DNA[J]. Molecular Ecology Resources, 2019, 19(6): 1407-1419
    [21] 刘金海. 闽南近海中国团扇鳐Platyrhina sinensis (Bloch et Schneider, 1801)生殖及生化生态研究[D]. 厦门: 厦门大学, 2006.
    Liu J H. Research on the reproduction and biochemistry-ecology of Platyrhina sinensis in Minnan marine water[D]. Xiamen: Xiamen University, 2006 (in Chinese).
    [22] 杜建国, 陈明茹, 杨圣云. 闽南近海中国团扇鳐和林氏团扇鳐肌肉中水分含量、灰分含量及能值的分析[J]. 台湾海峡, 2009, 28(4): 509-515
    Du J G, Chen M R, Yang S Y. Water content, ash content and calorific value of Platyrhina sinensis and Platyrhina limboonkengi in coastal waters of southern Fujian[J]. Journal of Oceanography in Taiwan Strait, 2009, 28(4): 509-515 (in Chinese)
    [23] 刘金海, 杨圣云, 陈明茹. 闽南近海中国团扇鳐年龄与生长研究[J]. 海洋渔业, 2011, 33(2): 144-150
    Liu J H, Yang S Y, Chen M R. On age and growth characteristics of Platyrhina sinensis[J]. Marine Fisheries, 2011, 33(2): 144-150 (in Chinese)
    [24] Chen Z, Wang X Y, Zhang J, et al. First record of the Chinese fanray, Platyrhina sinensis (Elasmobranchii: Myliobatiformes: Platyrhinidae), in the seawaters of Zhujiajian, Zhoushan, China[J]. Acta Ichthyologica et Piscatoria, 2018, 48(4): 409-414
    [25] Ward R D, Zemlak T S, Innes B H, et al. DNA barcoding Australia's fish species[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2005, 360(1462): 1847-1857
    [26] Jamnikar Ciglenečki U, Grom J, Toplak I, et al. Real-time RT-PCR assay for rapid and specific detection of classical swine fever virus: comparison of SYBR Green and TaqMan MGB detection methods using novel MGB probes[J]. Journal of Virological Methods, 2008, 147(2): 257-264
    [27] Ficetola G F, Miaud C, Pompanon F, et al. Species detection using environmental DNA from water samples[J]. Biology Letters, 2008, 4(4): 423-425
    [28] Tillotson M D, Kelly R P, Duda J J, et al. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales[J]. Biological Conservation, 2018, 220: 1-11
    [29] Knudsen S W, Ebert R B, Hesselsøe M, et al. Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea[J]. Journal of Experimental Marine Biology and Ecology, 2019, 510: 31-45
    [30] 李苗, 单秀娟, 王伟继, 等. 环境DNA在水体中存留时间的检测研究——以中国对虾为例[J]. 渔业科学进展, 2020, 41(1): 51-57
    Li M, Shan X J, Wang W J, et al. Studying the retention time of Fenneropenaeus chinensis eDNA in water[J]. Progress in Fishery Sciences, 2020, 41(1): 51-57 (in Chinese)
    [31] Foote A D, Thomsen P F, Sveegaard S, et al. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals[J]. PLoS One, 2012, 7(8): e41781
    [32] Tréguier A, Paillisson J M, Dejean T, et al. Environmental DNA surveillance for invertebrate species: advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds[J]. Journal of Applied Ecology, 2014, 51(4): 871-879
    [33] Biggs J, Ewald N, Valentini A, et al. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus)[J]. Biological Conservation, 2015, 183: 19-28
    [34] Minamoto T, Fukuda M, Katsuhara K R, et al. Environmental DNA reflects spatial and temporal jellyfish distribution[J]. PLoS One, 2017, 12(2): e0173073
    [35] Iwatsuki Y, Miyamoto K, Nakaya K, et al. A review of the genus Platyrhina (Chondrichthys: Platyrhinidae) from the northwestern Pacific, with descriptions of two new species[J]. Zootaxa, 2011, 2738(1): 26
    [36] Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz1346
    [37] Trisos C H, Merow C, Pigot A L. The projected timing of abrupt ecological disruption from climate change[J]. Nature, 2020, 580(7804): 496-501
    [38] The IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018[J]. Nature, 2020, 579(7798): 233-239
    [39] 王跃中, 孙典荣, 贾晓平, 等. 捕捞压力和气候变化对东海马面鲀渔获量的影响[J]. 南方水产科学, 2013, 9(1): 8-15
    Wang Y Z, Sun D R, Jia X P, et al. Influence of fishing pressure and climate change on filefish catches in East China Sea[J]. South China Fisheries Science, 2013, 9(1): 8-15 (in Chinese)
    [40] Farrell A P. Environment, antecedents and climate change: Lessons from the study of temperature physiology and river migration of salmonids[J]. Journal of Experimental Biology, 2009, 212(23): 3771-3780
    [41] Hermant M, Lobry J, Bonhommeau S, et al. Impact of warming on abundance and occurrence of flatfish populations in the Bay of Biscay (France)[J]. Journal of Sea Research, 2010, 64(1-2): 45-53
    [42] Drinkwater K F. The response of Atlantic cod (Gadus morhua) to future climate change[J]. ICES Journal of Marine Science, 2005, 62(7): 1327-1337
    [43] Hsieh H Y, Lo W T. Mesoscale distribution and assemblage structure of fish larvae in the Kuroshio waters off eastern Taiwan[J]. Marine Biodiversity, 2019, 49(4): 1971-1986
    [44] Lu H J, Lee H L. Changes in the fish species composition in the coastal zones of the Kuroshio Current and China Coastal Current during periods of climate change: Observations from the set-net fishery (1993-2011)[J]. Fisheries Research, 2014, 155: 103-113
    [45] Xu Y, Ma L, Sun Y, et al. Spatial variation of demersal fish diversity and distribution in the East China Sea: Impact of the bottom branches of the Kuroshio Current[J]. Journal of Sea Research, 2019, 144: 22-32
    [46] 李圣法, 程家骅, 严利平. 东海大陆架鱼类群落的空间结构[J]. 生态学报, 2007, 27(11): 4377-4386
    Li S F, Cheng J H, Yan L P. Spatial structures of fish communities on the continental shelf of the East China Sea[J]. Acta Ecologica Sinica, 2007, 27(11): 4377-4386 (in Chinese)
    [47] 熊瑛, 钟俊生, 汤建华, 等. 苏北浅滩生态监控区鱼卵的种类组成和数量分布[J]. 海洋渔业, 2007, 29(3): 200-206
    Xiong Y, Zhong J S, Tang J H, et al. The species composition and quantity distrbution of fish eggs in the shoal-water area along the northen coast of Jiangsu Province[J]. Marine Fisheries, 2007, 29(3): 200-206 (in Chinese)
    [48] 陆丽云, 张忍顺, 陈君. 江苏沿海辐射沙洲开发利用的前景[J]. 南京师大学报(自然科学版), 2002, 25(3): 18-24
    Lu L Y, Zhang R S, Chen J. The eveloping and utilizong foreground of Jiangsu coastal radiate sandbands[J]. Journal of Nanjing Normal University (Natural Science), 2002, 25(3): 18-24 (in Chinese)
    [49] Chang N N, Shiao J C, Gong G C, et al. Stable isotope ratios reveal food source of benthic fish and crustaceans along a gradient of trophic status in the East China Sea[J]. Continental Shelf Research, 2014, 84: 23-34
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高天翔,张浩博,王晓艳,陈治.基于eDNA技术的舟山近海中国团扇鳐定性与定量分析[J].水产学报,2024,48(3):039311

复制
分享
文章指标
  • 点击次数:450
  • 下载次数: 1006
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-05-11
  • 最后修改日期:2022-06-18
  • 录用日期:2022-07-17
  • 在线发布日期: 2024-03-19
文章二维码