规模化透水性人工鱼礁阻流效应的数值模拟
CSTR:
作者:
中图分类号:

S 953.1

基金项目:

国家重点研发计划 (2019YFD0901302);中国海油公益基金会项目


Numerical simulation of the flow retarding effect of large-scale permeable artificial reefs
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为在大尺度海洋模型中合理体现透水性人工鱼礁组合,基于海洋数值模型 (FVCOM)模拟了大陈岛拟建人工鱼礁区的水动力情况,比较了阻滞力法、实心礁法和附加底摩擦法在投礁前后的垂向流速、礁顶平面流速、水体向上输运通量和背涡流体积的差异,并根据投礁前后的流速差异,应用经验公式预测了投礁1年后底床泥沙冲淤情况。数值模拟结果显示,同未设置礁体相比,阻滞力法体现的鱼礁在所占水层内流速最大减少了0.06 m/s,迎流面垂向上产生的上升流流速最大为0.005 m/s;涨急时刻礁体背面的流速减小范围可达礁体组合长度的20倍以上,对应流速减小海域一年后底床淤积厚度最大约0.05 m;单个台礁平均向上水体输运通量为66 m3,背涡流体积为1550 m3。相较于实心礁法和附加底摩擦法,阻滞力法能很好体现礁体对水流的阻滞作用,避免了实心礁法在透水性鱼礁模拟中过高估计流场效应的问题,且无附加底摩擦法只适用于低矮礁体的缺陷。阻滞力法不仅适用于置底型透水性鱼礁,也适用于浮鱼礁和网箱等增养殖设施的水动力学和生态动力学研究。

    Abstract:

    Artificial reefs can be regarded as artificial structures in the sea. There are three methods to reflect bottom structures in large-scale ocean models: method of water depth modified treats artificial reefs as impermeable solids and reflects reefs by changing the water depth, which is applicable to impermeable reef mountains; method of bottom friction increased reflects the obstruction of water flow by structures on the seabed by increasing the bottom friction of the model, which is applicable to the simulation of submarine mussel beds and low oyster reefs; method of retarding force simulates the obstruction of water flow in different water layers by adding a retarding force term to the model momentum equation. In order to reasonably represent the permeable artificial reef assemblage in the large-scale ocean model, the hydrodynamic conditions of the proposed artificial reef area on Dachen Island were simulated based on the numerical ocean model FVCOM (An unstructured grid Finite-Volume Community Ocean Model), and the differences of vertical flow velocity, reef top plane flow velocity, upward transport flux and back eddy volume before and after reefing were compared among the method of water depth modified, method of bottom friction increased and method of retarding force. Based on the difference of flow velocity before and after reef casting, the empirical formula was applied to predict the bottom bed sediment flushing and siltation one year after reef casting. The numerical simulation results showed that by adding the retarding force term in the model, the flow velocity in the occupied water layer was reduced by 0.06 m/s compared with the time when the reef was not installed, and the maximum upward flow velocity was 0.005 m/s in the direction of incoming flow; the reduction of flow velocity at the back of the reef at the time of rapid rise can be more than 20 times of the combined length of the reef, and the maximum thickness of the bottom bed siltation after one year in the corresponding flow velocity reduction sea was about 0.05 m, the average upward water transport flux of single reef was 66 m3, and the back eddy volume was 1550 m3. Compared with the method of water depth modified and the method of bottom friction increased, the retarding force method can well represent the effect of the reef on water flow, avoiding the problem of overestimating the flow field effect in the simulation of permeable reefs by the method of water depth modified, and without the defect that the method of bottom friction increased is only applicable to low reefs. The hysteresis method is not only applicable to the bottom-set permeable reefs, but also to the study of hydrodynamics and ecodynamics of enrichment culture facilities such as floating reefs and net cages.

    参考文献
    [1] 林承刚, 杨红生, 陈鹰, 等. 现代化海洋牧场建设与发展——第230期双清论坛学术综述[J]. 中国科学基金, 2021, 35(1): 143-152
    Lin C G, Yang H S, Chen Y, et al. Construction and development of modern marine ranching academic review of the 230th Shuangqing forum[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(1): 143-152 (in Chinese)
    [2] Ogiwara S, Awashima Y, Miyabe H, et al. Conceptual design of a deep ocean water upwelling structure for development of fisheries[C]//Fourth ISOPE Ocean Mining Symposium. Szczecin: International Society of Offshore and Polar Engineers, 2001.
    [3] Macreadie P I, Fowler A M, Booth D J. Rigs‐to‐reefs: will the deep sea benefit from artificial habitat?[J]. Frontiers in Ecology and the Environment, 2011, 9(8): 455-461
    [4] Claisse J T, Pondella II D J, Love M, et al. Oil platforms off California are among the most productive marine fish habitats globally[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15462-15467
    [5] Cresson P, Le Direach L, Rouanet E, et al. Functional traits unravel temporal changes in fish biomass production on artificial reefs[J]. Marine Environmental Research, 2019, 145: 137-146
    [6] Liu T L, Su D T. Numerical analysis of the influence of reef arrangements on artificial reef flow fields[J]. Ocean Engineering, 2013, 74: 81-89
    [7] 于定勇, 杨远航, 李宇佳. 不同开口比人工鱼礁体水动力特性及礁体稳定性研究[J]. 中国海洋大学学报, 2019, 49(4): 128-136
    Yu D Y, Yang Y H, Li Y J. Research on hydrodynamic characteristics and stability of artificial reefs with different opening ratios[J]. Periodical of Ocean University of China, 2019, 49(4): 128-136 (in Chinese)
    [8] 戚福清,林军,张清雨. 不同侧板结构对八棱柱型人工鱼礁流场效应影响的研究[J]. 水产学报, DOI: 10.11964/jfc.20210512862.
    Qi F Q, Lin J, Zhang Q Y. Study on the influence of different side plate structures on the flow field effect of octagonal prism artificial reef[J]. Journal of Fisheries of China, DOI: 10.11964/jfc.20210512862.
    [9] Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2005, 9(4): 347-404
    [10] Roc T, Conley D C, Greaves D. Methodology for tidal turbine representation in ocean circulation model[J]. Renewable Energy, 2013, 51: 448-464
    [11] Zhang Y, Chen C S, Xue P F, et al. A view of physical mechanisms for transporting harmful algal blooms to Massachusetts Bay[J]. Marine Pollution Bulletin, 2020, 154: 111048
    [12] Ge J Z, Shi S Y, Liu J, et al. Interannual variabilities of nutrients and phytoplankton off the Changjiang Estuary in response to changing river inputs[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015595
    [13] Ge J Z, Torres R, Chen C S, et al. Influence of suspended sediment front on nutrients and phytoplankton dynamics off the Changjiang Estuary: a FVCOM-ERSEM coupled model experiment[J]. Journal of Marine Systems, 2020, 204: 103292
    [14] Zhang Z W, Wu H, Peng G Y, et al. Coastal ocean dynamics reduce the export of microplastics to the open ocean[J]. Science of the Total Environment, 2020, 713: 136634
    [15] Ding Z L, Zhu J R, Lyu H H. Impacts of the Qingcaosha Reservoir on saltwater intrusion in the Changjiang Estuary[J]. Anthropocene Coasts, 2021, 4(1): 17-35
    [16] Lyu H H, Zhu J R. Impact of the bottom drag coefficient on saltwater intrusion in the extremely shallow estuary[J]. Journal of Hydrology, 2018, 557: 838-850
    [17] 郭禹, 章守宇, 林军. 以数值实验为基础的米字型鱼礁布设模式差异下的流场效率[J]. 水产学报, 2019, 43(9): 2025-2038
    Guo Y, Zhang S Y, Lin J. Flow field efficiency of Mi-zi artificial reefs in different construction modes based on numerical experiments[J]. Journal of fisheries of China, 2019, 43(9): 2025-2038 (in Chinese)
    [18] 方继红, 林军, 杨伟, 等. 双层十字翼型人工鱼礁流场效应的数值模拟[J]. 上海海洋大学学报, 2021, 30(4): 743-754
    Fang J H, Lin J, Yang W, et al. Numerical simulation of flow field effect around the double-layer cross-wing artificial reef[J]. Journal of Shanghai Ocean University, 2021, 30(4): 743-754
    [19] 林军, 吴星辰, 杨伟. 潮流作用下人工鱼礁山海域泥沙输运的数值模拟研究[J]. 水产学报, 2020, 44(12): 2087-2099
    Lin J, Wu X C, Yang W. Numerical modelling of sediment transport in artificial seamount by the action of tidal current[J]. Journal of Fisheries of China, 2020, 44(12): 2087-2099 (in Chinese)
    [20] Bryden I G, Couch S J. ME1—marine energy extraction: tidal resource analysis[J]. Renewable Energy, 2006, 31(2): 133-139
    [21] Karsten R H, McMillan J M, Lickley M J, et al. Assessment of tidal current energy in the Minas Passage, Bay of Fundy[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2008, 222(5): 493-507
    [22] Walkington I, Burrows R. Modelling tidal stream power potential[J]. Applied Ocean Research, 2009, 31(4): 239-245
    [23] Li X R, Li M, McLelland S J, et al. Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model[J]. Renewable Energy, 2017, 114: 297-307
    [24] Couch S J, Bryden I. Tidal current energy extraction: hydrodynamic resource characteristics[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 2006, 220(4): 185-194
    [25] Martin-Short R, Hill J, Kramer S C, et al. Tidal resource extraction in the Pentland Firth, UK: potential impacts on flow regime and sediment transport in the Inner Sound of Stroma[J]. Renewable Energy, 2015, 76: 596-607
    [26] Chen C S, Liu H D, Beardsley R C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1): 159-186
    [27] Yang Z Q, Wang T P, Copping A E. Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model[J]. Renewable Energy, 2013, 50: 605-613
    [28] Murray R O H, Gallego A. A modelling study of the tidal stream resource of the Pentland Firth, Scotland[J]. Renewable Energy, 2017, 102: 326-340
    [29] Lin J, Li C Y, Zhang S Y. Hydrodynamic effect of a large offshore mussel suspended aquaculture farm[J]. Aquaculture, 2016, 451: 147-155
    [30] Sutherland G, Foreman M, Garrett C. Tidal current energy assessment for Johnstone strait, Vancouver Island[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2007, 221(2): 147-157
    [31] Lee S B, Li M, Zhang F. Impact of sea level rise on tidal range in Chesapeake and Delaware Bays[J]. Journal of Geophysical Research:Oceans, 2017, 122(5): 3917-3938
    [32] 王义刚, 林祥, 冯卫兵. 计算淤泥质海岸围垦多年回淤强度的一种简便方法[J]. 河海大学学报, 2000, 28(6): 100-102
    Wang Y G, Lin X, Feng W B. A simple method for calculating long-term deposition rate after construction of warping bank in estuary[J]. Journal of Hohai University, 2000, 28(6): 100-102 (in Chinese)
    [33] Coffey M E, Workman S R, Taraba J L, et al. Statistical procedures for evaluating daily and monthly hydrologic model predictions[J]. Transactions of the ASAE, 2004, 47(1): 59-68
    [34] Warner J C, Geyer W R, Lerczak J A. Numerical modeling of an estuary: a comprehensive skill assessment[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05001
    [35] Bitew M M, Gebremichael M. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model[J]. Water Resources Research, 2011, 47(6): W06526
    [36] Gupta H V, Kling H. On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics[J]. Water Resources Research, 2011, 47(10): W10601
    [37] 贾后磊, 谢健, 彭昆仑. 人工鱼礁选址合理性分析[J]. 海洋开发与管理, 2009, 26(4): 72-75
    Jia H L, Xie J, Peng K L. Reasonable analysis on the artificial reef site location[J]. Ocean Development and Management, 2009, 26(4): 72-75 (in Chinese)
    [38] 赵海涛, 张亦飞, 郝春玲, 等. 人工鱼礁的投放区选址和礁体设计[J]. 海洋学研究, 2006, 24(4): 69-76
    Zhao H T, Zhang Y F, Hao C L, et al. Sitting and designing of artificial reefs[J]. Journal of Marine Sciences, 2006, 24(4): 69-76 (in Chinese)
    [39] 姜昭阳. 人工鱼礁水动力学与数值模拟研究[D]. 青岛: 中国海洋大学, 2009.
    Jiang Z Y. Hydrodynamics and numerical simulation of artificial reefs[D]. Qingdao: Ocean University of China, 2009 (in Chinese).
    [40] 林军, 章守宇, 叶灵娜. 基于流场数值仿真的人工鱼礁组合优化研究[J]. 水产学报, 2013, 37(7): 1023-1031
    Lin J, Zhang S Y, Ye L N. Optimization study of artificial reef assemblage based on the numerical simulation of flow field[J]. Journal of Fisheries of China, 2013, 37(7): 1023-1031 (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨伟,林军,唐建江,杨冠林.规模化透水性人工鱼礁阻流效应的数值模拟[J].水产学报,2022,46(12):2366~2382

复制
分享
文章指标
  • 点击次数:336
  • 下载次数: 1058
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-05-13
  • 最后修改日期:2021-06-08
  • 录用日期:2021-06-08
  • 在线发布日期: 2022-12-09
文章二维码