水解鱼蛋白的营养特征及其在水产动物营养饲料中的研究进展
作者:
基金项目:

国家自然科学基金(31972803,31902387,31672663);中国博士后科学基金(2018M632751)


Nutritional characteristics of fish protein hydrolysate and related research progress in aquaculture nutrition
Author:
Fund Project:

National Natural Science Foundation of China (31972803, 31902387, 31672663); China Postdoctoral Science Foundation (2018M632751)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [112]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    鱼粉短缺是当今水产饲料行业中亟待解决的难题,而水产品加工副产品占水产品的总重量超过60%,因此,充分利用水产品加工副产品,提高其营养价值,是解决鱼粉短缺的重要途径。水解鱼蛋白是水解水产品加工副产品而得到的富含游离氨基酸和不同肽链长度的蛋白寡肽,目前,越来越多的研究证明,其对水产养殖动物的生长性能具有重要的促进作用。本文从水解鱼蛋白的制备、营养特性及水产饲料中的研究和应用方面展开综述,系统论述近年来水解鱼蛋白在水产动物营养相关领域的研究成果,并提出在水产饲料中的进一步研究方向,以期为水解鱼蛋白在水产动物营养学研究及其在水产饲料中的应用提供参考。

    Abstract:

    The shortage of fishmeal is an urgent problem to be solved in the research of aquaculture nutrition. Given that fish by-product accounts for more than 60% of processed fish biomass, more efficient use of marine protein from fish by-products and improving their nutritional value are important ways to alleviate fish meal shortage at present. Fish protein hydrolysate, which mainly contains a mixture of small peptides and free amino acids, is produced by hydrolyzing fish by-products. More and more studies have proved that fish protein hydrolysate has a beneficial effect on the growth performance of aquatic animals. This paper reviews the preparation of fish protein hydrolysate, its nutritional characteristics and study on aquaculture nutrition. This study systematically discusses the research results of fish protein hydrolysate in the field of aquaculture nutrition in recent years, and proposes further research directions in aquafeed, in order to provide reference for the study of fish protein hydrolysate in aquaculture nutrition and aquafeed application.

    参考文献
    [1] FAO. The state of world fisheries and aquaculture[R]. Rome:FAO, 2018:5-7.
    [2] Tacon A G J, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds:trends and Future Prospects[J]. Aquaculture, 2008, 285(1-4):146-158
    [3] Chalamaiah M, Dinesh kumar B, Hemalatha R, et al. Fish protein hydrolysates:proximate composition, amino acid composition, antioxidant activities and applications:a review[J]. Food Chemistry, 2012, 135(4):3020-3038
    [4] Halim N R A, Yusof H M, Sarbon N M. Functional and bioactive properties of fish protein hydolysates and peptides:a comprehensive review[J]. Trends in Food Science & Technology, 2016, 51:24-33
    [5] Hardy R W, Higgs D A, Lall S P, et al. Alternative dietary protein and lipid sources for sustainable production of salmonids[R]. Fisken Og Havet NR. 8-2001. Bergen, Norway:Institute of Marine Research, 2001:44.
    [6] Martínez-Alvarez O, Chamorro S, Brenes A. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding:a review[J]. Food Research International, 2015, 73:204-212
    [7] Roslan J, Yunos K F, Abdullah N, et al. Characterization of fish protein hydrolysate from tilapia (Oreochromis niloticus) by-product[J]. Agriculture and Agricultural Science Procedia, 2014, 2:312-319
    [8] Liaset B, Lied E, Espe M. Enzymatic hydrolysis of by-products from the fish-filleting industry; chemical characterisation and nutritional evaluation[J]. Journal of the Science of Food and Agriculture, 2000, 80(5):581-589
    [9] Liaset B, Espe M. Nutritional composition of soluble and insoluble fractions obtained by enzymatic hydrolysis of fish-raw materials[J]. Process Biochemistry, 2008, 43(1):42-48
    [10] 王新星, 孔凡华, 许团辉, 等. 水解鱼蛋白营养组成及评价[J]. 渔业科学进展, 2011, 32(3):104-110 Wang X X, Kong F H, Xu T H, et al. Evaluation on the nutritional composition of fish protein hydrolysate[J]. Marine Fisheries Research, 2011, 32(3):104-110(in Chinese)
    [11] Naylor R L, Hardy R W, Bureau D P, et al. Feeding aquaculture in an era of finite resources[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(36):15103-15110
    [12] Gallardo P, Gaxiola G, Soberano S, et al. Nutritive value of diets containing fish silage for juvenile Litopenaeus vannamei (Bonne, 1931)[J]. Journal of the Science of Food and Agriculture, 2012, 92(11):2320-2325
    [13] Zamora-Sillero J, Gharsallaoui A, Prentice C. Peptides from fish by-product protein hydrolysates and its functional properties:an overview[J]. Marine Biotechnology, 2018, 20(2):118-130
    [14] Hou Y Q, Wu Z L, Dai Z L, et al. Protein hydrolysates in animal nutrition:industrial production, bioactive peptides, and functional significance[J]. Journal of Animal Science and Biotechnology, 2017, 8:24
    [15] Olsen R L, Toppe J. Fish silage hydrolysates:not only a feed nutrient, but also a useful feed additive[J]. Trends in Food Science & Technology, 2017, 66:93-97
    [16] Kurozawa L E, Park K J, Hubinger M D. Effect of carrier agents on the physicochemical properties of a spray dried chicken meat protein hydrolysate[J]. Journal of Food Engineering, 2009, 94(3-4):326-333
    [17] Silva V M, Kurozawa L E, Park K J, et al. Water sorption and glass transition temperature of spray-dried mussel meat protein hydrolysate[J]. Drying Technology, 2012, 30(2):175-184
    [18] Molla A E, Hovannisyan H G. Optimization of enzymatic hydrolysis of visceral waste proteins of beluga Huso huso using Protamex[J]. International Aquatic Research, 2011, 3(2):93-99
    [19] 吕顺, 林琳, 向蔚, 等. 鮰鱼皮明胶的水解工艺[J]. 食品科学, 2013, 34(5):156-160 Lin L, Xiang W, et al. Optimization of hydrolysis conditions of gelatin from channel catfish skin[J]. Food Science, 2013, 34(5):156-160(in Chinese)
    [20] Saidi S, Belleville M P, Deratani A, et al. Optimization of peptide production by enzymatic hydrolysis of tuna dark muscle by-product using commercial proteases[J]. African Journal of Biotechnology, 2013, 12(13):1533-1547
    [21] Jamil N H, Halim N R A, Sarbon N M. Optimization of enzymatic hydrolysis condition and functional properties of eel (Monopterus sp.) protein using response surface methodology (RSM)[J]. International Food Research Journal, 2016, 23(1):1-9
    [22] Guérard F, Dufossé L, De La Broise D, et al. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase[J]. Journal of Molecular Catalysis B:Enzymatic, 2001, 11(4-6):1051-1059
    [23] Šližytė R, Daukšas E, Falch E, et al. Characteristics of protein fractions generated from hydrolysed cod (Gadus morhua) by-products[J]. Process Biochemistry, 2005, 40(6):2021-2033
    [24] Souissi N, Bougatef A, Triki-Ellouz Y, et al. Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates[J]. Food Technology and Biotechnology, 2007, 45(2):187-194
    [25] Bhaskar N, Benila T, Radha C, et al. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease[J]. Bioresource Technology, 2008, 99(2):335-343
    [26] Ovissipour M, Abedian A, Motamedzadegan A, et al. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera[J]. Food Chemistry, 2009, 115(1):238-242
    [27] Kechaou E S, Dumay J, Donnay-Moreno C, et al. Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases:effects on lipid distribution and amino acid composition[J]. Journal of Bioscience and Bioengineering, 2009, 107(2):158-164
    [28] Batista I, Ramos C, Coutinho J, et al. Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced[J]. Process Biochemistry, 2010, 45(1):18-24
    [29] Jai ganesh R, Nazeer R A, Sampath Kumar N S. Purification and identification of antioxidant peptide from black pomfret, Parastromateus niger (Bloch, 1975) viscera protein hydrolysate[J]. Food Science and Biotechnology, 2011, 20(4):1087-1094
    [30] Salwanee S, Wan Aid W M, Mamot S, et al. Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using alcalase[J]. Sains Malaysiana, 2013, 42(3):279-287
    [31] Shirahigue L D, Silva M O, Camargo A C, et al. The feasibility of increasing lipid extraction in tilapia (Oreochromis niloticus) waste by proteolysis[J]. Journal of Aquatic Food Product Technology, 2016, 25(2):265-271
    [32] Chalamaiah M, Rao G N, Rao D G, et al. Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties[J]. Food Chemistry, 2010, 120(3):652-657
    [33] Liaset B, Julshamn K, Espe M. Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with ProtamexTM[J]. Process Biochemistry, 2003, 38(12):1747-1759
    [34] Shamloo M, Bakar J, Mat Hashim D, et al. Biochemical properties of red tilapia (Oreochromis niloticus) protein hydrolysates[J]. International Food Research Journal, 2012, 19(1):183-188
    [35] Tang W T, Zhang H, Wang L, et al. Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis[J]. Food Chemistry, 2015, 168:115-123
    [36] 卫育良. 水解鱼蛋白对摄食高植物蛋白饲料的大菱鲆(Scophthalmus maximus L.)幼鱼生长性能的影响及其代谢组学初步分析[D]. 青岛:中国海洋大学, 2014. Wei Y L. Effects of fish protein hydrolysates on growth performance and taurine metabolism in juvenile turbot (Scophthalmus maximus L.) fed diets with high levels of plant protein[D]. Qingdao:Ocean University of China, 2014(in Chinese).
    [37] Abe H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle[J]. Biochemistry. Biokhimiia, 2000, 65(7):757-765
    [38] Aksnes A, Hope B, Albrektsen S. Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. II:flesh quality, absorption, retention and fillet levels of taurine and anserine[J]. Aquaculture, 2006, 261(1):318-326
    [39] Aksnes A, Hope B, Høstmark Ø, et al. Inclusion of size fractionated fish hydrolysate in high plant protein diets for Atlantic cod, Gadus morhua[J]. Aquaculture, 2006, 261(3):1102-1110
    [40] Aksnes A, Hope B, Jönsson E, et al. Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. I:growth, growth regulation and feed utilization[J]. Aquaculture, 2006, 261(1):305-317
    [41] El-Sayed A F M. Is dietary taurine supplementation beneficial for farmed fish and shrimp? A comprehensive review[J]. Reviews in Aquaculture, 2014, 6(4):241-255
    [42] Kousoulaki K, Albrektsen S, Langmyhr E, et al. The water soluble fraction in fish meal (stickwater) stimulates growth in Atlantic salmon (Salmo salar L.) given high plant protein diets[J]. Aquaculture, 2009, 289(1-2):74-83
    [43] Kousoulaki K, Olsen H J, Albrektsen S, et al. High growth rates in Atlantic salmon (Salmo salar L.) fed 7.5% fish meal in the diet. Micro-, ultra-and nano-filtration of stickwater and effects of different fractions and compounds on pellet quality and fish performance[J]. Aquaculture, 2012, 338-341:134-146
    [44] Wei Y L, Liang M Q, Xu H G, et al. Taurine alone or in combination with fish protein hydrolysate affects growth performance, taurine transport and metabolism in juvenile turbot (Scophthalmus maximus L.)[J]. Aquaculture Nutrition, 2019, 25(2):396-405
    [45] 张莉莉. 饲料中添加含氮小分子化合物及磷虾水解物对大菱鲆生长性能及相关基因表达的影响[D]. 上海:上海海洋大学, 2017. Zhang L L. Effects of dietary small molecular nitrogen compounds and krill hydrolysates on growth performance and expression of growth related genes of juvenile turbot (Scophthalmus maximus L.)[D]. Shanghai:Shanghai Ocean University, 2017(in Chinese).
    [46] Pacheco-Aguilar R, Mazorra-Manzano M A, Ramírez-Suárez J C. Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease[J]. Food Chemistry, 2008, 109(4):782-789
    [47] Chalamaiah M, Jyothirmayi T, Bhaskarachary K, et al. Chemical composition, molecular mass distribution and antioxidant capacity of rohu (Labeo rohita) roe (egg) protein hydrolysates prepared by gastrointestinal proteases[J]. Food Research International, 2013, 52(1):221-229
    [48] Foh M B K, Qixing J, Amadou I, et al. Influence of ultrafiltration on antioxidant activity of tilapia (Oreochromis niloticus) protein hydrolysate[J]. Advance Journal of Food Science and Technology, 2010, 2(5):227-235
    [49] Carvalho A P, Oliva-Teles A, Bergot P. A preliminary study on the molecular weight profile of soluble protein nitrogen in live food organisms for fish larvae[J]. Aquaculture, 2003, 225(1-4):445-449
    [50] 李文杰. 不同氨基酸模式及来源对大黄鱼(Larimichthys crocea)稚鱼生长、存活、消化酶活力及蛋白质代谢的影响[D]. 青岛:中国海洋大学, 2013. Li W J. Effects of different dietary amino acid patterns and sources on growth, survival, activities of digestive enzymes and protein metabolism of large yellow croaker (Larimichthys crocea) larvae[D]. Qingdao:Ocean University of China, 2013(in Chinese).
    [51] 刘峰. 大黄鱼和半滑舌鳎仔稚鱼人工微颗粒饲料蛋白源选择及其加工工艺相关研究[D]. 青岛:中国海洋大学, 2007. Liu F. A study on protein sources screed and processing-related technics in artificial microdiet for larvae of large yellow croaker (Pseudosciaena crocea) and tongue sole (Cynoglossus semilaevis)[D]. Qingdao:Ocean University of China, 2007(in Chinese).
    [52] 柳旭东, 梁萌青, 张利民, 等. 饲料中添加水解鱼蛋白对半滑舌鳎稚鱼生长及生理生化指标的影响[J]. 水生生物学报, 2010, 34(2):242-249 Liu X D, Liang M Q, Zhang L M, et al. Effect of fish protein hydrolysate levels on growth performance and biological and physiological parameters in tongue sole (Cynoglossus semilaevis Günther, 1873) post-larvae[J]. Acta Hydrobiologica Sinica, 2010, 34(2):242-249(in Chinese)
    [53] 张珊. 晶体氨基酸与水解鱼蛋白对半滑舌鳎(Cynoglossus semilaeviss Günther)稚鱼的生长、消化酶活力及PepT1基因表达的影响[D]. 青岛:中国海洋大学, 2013. Zhang S. Effects of crystalline amino acid and fish hydrolysate on growth performance, digestive enzymes and Pep T1 gene expression in tongue sole (Cynoglossus semilaeviss Günther) larvae[D]. Qingdao:Ocean University of China, 2013(in Chinese).
    [54] Berge G M, Storebakken T. Fish protein hydrolyzate in starter diets for Atlantic salmon (Salmo salar) fry[J]. Aquaculture, 1996, 145(1-4):205-212
    [55] Cahu C L, Infante J L Z, Quazuguel P, et al. Protein hydrolysate vs. fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax larvae[J]. Aquaculture, 1999, 171(1-2):109-119
    [56] Cahu C, Rønnestad I, Grangier V, et al. Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin[J]. Aquaculture, 2004, 238(1-4):295-308
    [57] Kotzamanis Y P, Gisbert E, Gatesoupe F J, et al. Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae[J]. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology, 2007, 147(1):205-214
    [58] Ovissipour M, Abedian Kenari A, Nazari R, et al. Tuna viscera protein hydrolysate:nutritive and disease resistance properties for Persian sturgeon (Acipenser persicus L.) larvae[J]. Aquaculture Research, 2014, 45(4):591-601
    [59] Skalli A, Zambonino-Infante J L, Kotzamanis Y, et al. Peptide molecular weight distribution of soluble protein fraction affects growth performance and quality in European sea bass (Dicentrarchus labrax) larvae[J]. Aquaculture Nutrition, 2014, 20(2):118-131
    [60] Srichanun M, Tantikitti C, Kortner T M, et al. Effects of different protein hydrolysate products and levels on growth, survival rate and digestive capacity in Asian seabass (Lates calcarifer Bloch) larvae[J]. Aquaculture, 2014, 428-429:195-202
    [61] Taheri A, Kenari A A, Motamedzadegan A, et al. The relationship between different protein hydrolysate diets by growth, digestive enzymes and resistance to an aeromonas salmonicida bacterial challenge in rainbow trout (Oncorhinchus mykiss) alevine[J]. World Journal of Fish and Marine Sciences, 2010, 2(4):264-274
    [62] Cai Z N, Li W J, Mai K S, et al. Effects of dietary size-fractionated fish hydrolysates on growth, activities of digestive enzymes and aminotransferases and expression of some protein metabolism related genes in large yellow croaker (Larimichthys crocea) larvae[J]. Aquaculture, 2015, 440:40-47
    [63] Dabrowski K, Zhang Y F, Kwasek K, et al. Effects of protein-, peptide-and free amino acid-based diets in fish nutrition[J]. Aquaculture Research, 2010, 41(5):668-683
    [64] Zheng K K, Liang M Q, Yao H B, et al. Effect of size-fractionated fish protein hydrolysate on growth and feed utilization of turbot (Scophthalmus maximus L.)[J]. Aquaculture Research, 2013, 44(6):895-902
    [65] Xu H G, Mu Y C, Zhang Y, et al. Graded levels of fish protein hydrolysate in high plant diets for turbot (Scophthalmus maximus):effects on growth performance and lipid accumulation[J]. Aquaculture, 2016, 454:140-147
    [66] Wei Y, Liang M, Mu Y, et al. The effect of ultrafiltered fish protein hydrolysate level on growth performance, protein digestibility and mRNA expression of PepT 1 in juvenile turbot (Scophthalmus maximus L.)[J]. Aquaculture Nutrition, 2016, 22(5):1006-1017
    [67] Zheng K, Xu T, Qian C, et al. Effect of low molecular weight fish protein hydrolysate on growth performance and IGF-I expression in Japanese flounder (Paralichthys olivaceus) fed high plant protein diets[J]. Aquaculture Nutrition, 2014, 20(4):372-380
    [68] Khosravi S, Bui H T D, Rahimnejad S, et al. Dietary supplementation of marine protein hydrolysates in fish-meal based diets for red sea bream (Pagrus major) and olive flounder (Paralichthys olivaceus)[J]. Aquaculture, 2015, 435:371-376
    [69] Tang H G, Wu T X, Zhao Z Y, et al. Effects of fish protein hydrolysate on growth performance and humoral immune response in large yellow croaker (Pseudosciaena crocea R.)[J]. Journal of Zhejiang University Science B, 2008, 9(9):684-690
    [70] Wu D W, Zhou L Y, Gao M M, et al. Effects of stickwater hydrolysates on growth performance for yellow catfish (Pelteobagrus fulvidraco)[J]. Aquaculture, 2018, 488:161-173
    [71] Liang M Q, Wang J L, Chang Q, et al. Effects of different levels of fish protein hydrolysate in the diet on the nonspecific immunity of Japanese sea bass, Lateolabrax japonicus (Cuvieret Valenciennes, 1828)[J]. Aquaculture Research, 2006, 37(1):102-106
    [72] Siddik M A B, Howieson J, Partridge G J, et al. Dietary tuna hydrolysate modulates growth performance, immune response, intestinal morphology and resistance to Streptococcus iniae in juvenile barramundi, Lates calcarifer[J]. Scientific Reports, 2018, 8(1):15942
    [73] Chotikachinda R, Tantikitti C, Benjakul S, et al. Tuna viscera hydrolysate products prepared by different enzyme preparations improve the feed intake and growth of Asian seabass, Lates calcarifer, fed total fishmeal replacement diets[J]. Songklanakarin Journal of Science and Technology, 2018, 40(1):167-177
    [74] Leduc A, Zatylny-Gaudin C, Robert M, et al. Dietary aquaculture by-product hydrolysates:impact on the transcriptomic response of the intestinal mucosa of European seabass (Dicentrarchus labrax) fed low fish meal diets[J]. BMC Genomics, 2018, 19:396
    [75] Espe M, Sveier H, Høgøy I, et al. Nutrient absorption and growth of Atlantic salmon (Salmo salar L.) fed fish protein concentrate[J]. Aquaculture, 1999, 174(1-2):119-137
    [76] Refstie S, Olli J J, Standal H. Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet[J]. Aquaculture, 2004, 239(1-4):331-349
    [77] Hevrøy E M, Espe M, Waagbø R, et al. Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth[J]. Aquaculture Nutrition, 2005, 11(4):301-313
    [78] Espe M, Ruohonen K, El-Mowafi A. Hydrolysed fish protein concentrate (FPC) reduces viscera mass in Atlantic salmon (Salmo salar) fed plant-protein-based diets[J]. Aquaculture Nutrition, 2012, 18(6):599-609
    [79] Goosen N J, De Wet L F, Görgens J F. Comparison of hydrolysed proteins from different raw materials in diets for Mozambique tilapia Oreochromis mossambicus[J]. Aquaculture International, 2015, 23(5):1165-1178
    [80] Mamauag R E P, Ragaza J A. Growth and feed performance, digestibility and acute stress response of juvenile grouper (Epinephelus fuscoguttatus) fed diets with hydrolysate from milkfish offal[J]. Aquaculture Research, 2017, 48(4):1638-1647
    [81] Bui H T D, Khosravi S, Fournier V, et al. Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates[J]. Aquaculture, 2014, 418-419:11-16
    [82] Fagbenro O, Jauncey K, Haylor G. Nutritive value of diet containing dried lactic acid fermented fish silage and soybean meal for juvenile Oreochromis niloticus and Clarias gariepinus[J]. Aquatic Living Resources, 1994, 7(2):79-85
    [83] da Silva T C, Rocha J D M, Moreira P, et al. Fish protein hydrolysate in diets for Nile tilapia post-larvae[J]. Pesquisa Agropecuária Brasileira, 2017, 52(7):485-492
    [84] Swanepoel J C, Goosen N J. Evaluation of fish protein hydrolysates in juvenile African catfish (Clarias gariepinus) diets[J]. Aquaculture, 2018, 496:262-269
    [85] Zamora-Sillero J, Tavares Kütter M, Borges Tesser M, et al. Effect of dietary common carp by-product protein hydrolysates on antioxidant status in different organs of zebrafish (Danio rerio)[J]. Aquaculture Nutrition, 2019, 25(1):110-118
    [86] Ospina-Salazar G H, Ríos-Durán M G, Toledo-Cuevas E M, et al. The effects of fish hydrolysate and soy protein isolate on the growth performance, body composition and digestibility of juvenile pike silverside, Chirostoma estor[J]. Animal Feed Science and Technology, 2016, 220:168-179
    [87] Zheng K, Liang M, Yao H, et al. Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus)[J]. Aquaculture Nutrition, 2012, 18(3):297-303
    [88] Mach D T N, Nortvedt R. Free amino acid distribution in plasma and liver of juvenile cobia (Rachycentron canadum) fed increased levels of lizardfish silage[J]. Aquaculture Nutrition, 2011, 17(2):e644-e656
    [89] Niu J, Zhang Y Q, Liu Y J, et al. Effects of graded replacement of fish meal by fish protein hydrolysate on growth performance of early post-larval Pacific white shrimp (Litopenaeus vannamei, Boone)[J]. Journal of Applied Animal Research, 2014, 42(1):6-15
    [90] Li X L, Wang L, Zhang C X, et al. Effects of supplementing low-molecular-weight fish hydrolysate in high soybean meal diets on growth, antioxidant activity and non-specific immune response of pacific white shrimp (Litopenaeus vannamei)[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2018, 18(5):717-727
    [91] Hernández C, Olvera-Novoa M A, Smith D M, et al. Enhancement of shrimp Litopenaeus vannamei diets based on terrestrial protein sources via the inclusion of tuna by-product protein hydrolysates[J]. Aquaculture, 2011, 317(1-4):117-123
    [92] Nguyen H T M, Pérez-Gálvez R, Bergé J P. Effect of diets containing tuna head hydrolysates on the survival and growth of shrimp Penaeus vannamei[J]. Aquaculture, 2012, 324-325:127-134
    [93] Xu H G, Mu Y C, Liang M Q, et al. Application of different types of protein hydrolysate in high plant protein diets for juvenile turbot (Scophthalmus maximus)[J]. Aquaculture Research, 2017, 48(6):2945-2953
    [94] 牟玉超, 柳茜, 卫育良, 等. 饲料中添加两种蛋白水解物对大菱鲆(Scophthalmus maximus L.)幼鱼生长性能及肠道组织学结构的影响[J]. 渔业科学进展, 2017, 38(2):83-90 Mu Y C, Liu X, Wei Y L, et al. Effects of dietary inclusion of two protein hydrolysates on growth performance and intestinal histological structure of juvenile turbot (Scophthalmus maximus L.)[J]. Progress in Fishery Sciences, 2017, 38(2):83-90(in Chinese)
    [95] 张婷婷, 陈效儒, 梁萌青, 等. 不同来源的蛋白水解物对凡纳滨对虾生长及非特异性免疫的影响[J]. 饲料工业, 2016, 37(12):15-20 Zhang T T, Chen X R, Liang M Q, et al. Effects of different sources of protein hydrolysates on growth performance and non-specific immunity of Pacific white shrimp (Litopenaeus vannamei)[J]. Feed Industry, 2016, 37(12):15-20(in Chinese)
    [96] 张婷婷, 陈效儒, 梁萌青, 等. 不同蛋白水解物对花鲈(Lateolabrax japonicus)生长性能及非特异性免疫的影响[J]. 渔业科学进展, 2017, 38(3):96-105 Zhang T T, Chen X R, Liang M Q, et al. Effects of different protein hydrolysates on growth performance and non-specific immunity of Japanese seabass (Lateolabrax japonicus)[J]. Progress in Fishery Sciences, 2017, 38(3):96-105(in Chinese)
    [97] Khosravi S, Bui H T D, Herault M, et al. Supplementation of protein hydrolysates to a low-fishmeal diet improves growth and health status of juvenile olive flounder, Paralichthys olivaceus[J]. Journal of the World Aquaculture Society, 2018, 49(5):897-911
    [98] Bröer S. Amino acid transport across mammalian intestinal and renal epithelia[J]. Physiological Reviews, 2008, 88(1):249-286
    [99] Verri T, Barca A, Pisani P, et al. Di-and tripeptide transport in vertebrates:the contribution of teleost fish models[J]. Journal of Comparative Physiology B, 2017, 187(3):395-462
    [100] Bakke S, Jordal A E O, Gómez-Requeni P, et al. Dietary protein hydrolysates and free amino acids affect the spatial expression of peptide transporter PepT1 in the digestive tract of Atlantic cod (Gadus morhua)[J]. Comparative Biochemistry and Physiology-Part B:Biochemistry and Molecular Biology, 2010, 156(1):48-55
    [101] Wei Y, Liang M, Xu H. Fish protein hydrolysate affected amino acid absorption and related gene expressions of IGF-1/AKT pathways in turbot (Scophthalmus maximus)[J]. Aquaculture Nutrition, 2019, 00:1-11
    [102] Yamamoto T, Akimoto A, Kishi S, et al. Apparent and true availabilities of amino acids from several protein sources for fingerling rainbow trout, common carp, and red sea bream[J]. Fisheries Science, 1998, 64(3):448-458
    [103] Xu D D, He G, Mai K S, et al. Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.)[J]. British Journal of Nutrition, 2016, 115(3):379-388
    [104] Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy[J]. Disease Models & Mechanisms, 2013, 6(1):25-39
    [105] Wu G Y, Bazer F W, Dai Z L, et al. Amino acid nutrition in animals:protein synthesis and beyond[J]. Annual Review of Animal Biosciences, 2014, 2:387-417
    [106] Hevrøy E M, Jordal A E O, Hordvik I, et al. Myosin heavy chain mRNA expression correlates higher with muscle protein accretion than growth in Atlantic salmon, Salmo salar[J]. Aquaculture, 2006, 252(2-4):453-461
    [107] 李本相, 卫育良, 梁萌青, 等. 水解鱼蛋白对大菱鲆生长、体组成及肌纤维组织形态结构的影响[J]. 渔业科学进展, 2019, 40(5):155-165 Li B X, Wei Y L, Liang M Q, et al. The effects of fish protein hydrolysate on the growth, body composition and morphological structure of muscle fiber of turbot (Scophthalmus maximus L.)[J]. Progress in Fishery Sciences, 2019, 40(5):155-165(in Chinese)
    [108] Bjørndal B, Berge C, Ramsvik M S, et al. A fish protein hydrolysate alters fatty acid composition in liver and adipose tissue and increases plasma carnitine levels in a mouse model of chronic inflammation[J]. Lipids in Health and Disease, 2013, 12:143
    [109] Liaset B, Hao Q, Jørgensen H, et al. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome[J]. Journal of Biological Chemistry, 2011, 286(32):28382-28395
    [110] Liaset B, Madsen L, Hao Q, et al. Fish protein hydrolysate elevates plasma bile acids and reduces visceral adipose tissue mass in rats[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2009, 1791(4):254-262
    [111] 曹林, 张婷婷, 徐后国, 等. 饲料中不同水解蛋白对鲈鱼(Lateolabrax japonicus)幼鱼鱼体及组织脂肪含量的影响[J]. 渔业科学进展, 2017, 38(3):86-95 Cao L, Zhang T T, Xu H G, et al. Effects of different protein hydrolysates in high plant protein diets on the lipid accumulation of juvenile Japanese seabass (Lateolabrax japonicus)[J]. Progress in Fishery Sciences, 2017, 38(3):86-95(in Chinese)
    [112] Wei Y L, Liang M Q, Mai K S, et al. The effect of ultrafiltered fish protein hydrolysate levels on the liver and muscle metabolic profile of juvenile turbot (Scophthalmus maximus L.) by 1H NMR-based metabolomics studies[J]. Aquaculture Research, 2017, 48(7):3515-3527
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卫育良,徐后国,梁萌青.水解鱼蛋白的营养特征及其在水产动物营养饲料中的研究进展[J].水产学报,2019,43(10):2060~2073

复制
分享
文章指标
  • 点击次数:1121
  • 下载次数: 1680
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-08-26
  • 最后修改日期:2019-09-25
  • 录用日期:2019-10-02
  • 在线发布日期: 2019-10-29
文章二维码