海带配子体γ-碳酸酐酶的基因克隆与功能鉴定
作者:
中图分类号:

Q785;S917.3

基金项目:

国家重点研发计划“蓝色粮仓科技创新”重点专项(2018YFD0901500);国家自然科学基金(41376136);国家“双一流”水产学科


Cloning and functional characterization of a γ-carbonic anhydrase (CA) gene from the gametophytes of Saccharina japonica
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究采用cDNA末端快速扩增(RACE)等技术获得海带配子体细胞一个γ-亚型碳酸酐酶(CA)基因的cDNA及DNA全长序列。其cDNA长为1 618 bp,编码由305个氨基酸组成的蛋白;DNA长为11 812 bp,具6个内含子,将开放阅读框(ORF)分割成7个外显子;其具有一个gamma-CA的结构域,并具有一个独特的左手平行β-螺旋结构域;由36个CA的氨基酸序列所构建的聚类图显示,该CA与其他物种的γ-CA聚为一支。因而,将该克隆的基因命名为Sjγ-CA。为了解其编码蛋白的功能,将Sjγ-CA的ORF亚克隆至表达载体pET28a上,导入大肠杆菌表达菌株BL21中,培养并诱导目的基因表达,亲和层析以纯化重组蛋白。SDS聚丙烯酰胺凝胶电泳(SDS-PAGE电泳)、免疫印迹和质谱技术鉴定结果表明,纯化所获得的重组蛋白是Sjγ-CA。利用电极法和分光光度计法分别检测重组的Sjγ-CA在CO2与HCO3-中的水合反应及在乙酸对硝基苯酯水解反应中的活性,结果显示,重组Sjγ-CA的水合酶比活力为0.82 U/mg,但没有酯酶活性,从而从功能上鉴定了Sjγ-CA。该研究为后续探讨Sjγ-CA在海带配子体乃至孢子体细胞或组织中的亚细胞定位等研究奠定了基础。

    Abstract:

    In this study, the full-length cDNA and DNA of a γ-type carbonic anhydrase (CA) gene was obtained from the gametophyte of Saccharina japonica by the rapid amplification of cDNA ends (RACE) technique. The results showed that the cDNA of this gene was 1 618 bp in length, encoding a protein consisting of 305 amino acids, and the genomic DNA was 11 812 bp long, with 6 introns, so that the open reading frame (ORF) was divided into 7 exons. It had a gamma-CA domain and a unique LβH domain. The Neighbor-joining and the Maximum Likelihood phylogenetic tree constructed from the deduced amino acid sequences of 36 CAs showed that the cloned CA was clustered with other γ-CAs. Therefore, the gene was designated Sjγ-CA. In order to understand the function of the encoded protein, the ORF of Sjγ-CA was subcloned and ligated into the expression vector pET-28a to generate pET28a-SiγCA. Subsequently, this construct was introduced into Escherichia coli BL21 for the heterologous expression of target protein. The recombinant Sjγ-CA was purified by affinity chromatography. After SDS-PAGE electrophoresis, Western blotting analysis and mass spectrometry, the purified recombinant Sjγ-CA was identified. The activity of rSjγ-CA in the hydration reaction of CO2 and HCO3- was detected by electrode method and its specific activity was 0.82 U/mg. The hydrolysis of p-nitrophenyl acetate was detected by spectrophotometer, but no esterase activity was detected. Sjγ-CA was thus identified functionally. This study provides a basis for the subcellular localization of Sjγ-CA in gametophyte and sporophyte cells or tissues of S. japonica.

    参考文献
    [1] Moroney J V, Ma Y B, Frey W D, et al. The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles[J]. Photosynthesis Research, 2011, 109(1-3): 133-149
    [2] Del Prete S, Vullo D, Fisher G M, et al. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—the η-carbonic anhydrases[J]. Bioorganic & Medicinal Chemistry Letters, 2014, 24(18): 4389-4396
    [3] Kikutani S, Nakajima K, Nagasato C, et al. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35): 9828-9833
    [4] Alber B E, Ferry J G. A carbonic anhydrase from the archaeon Methanosarcina thermophila[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(15): 6909-6913
    [5] Aspatwar A, Haapanen S, Parkkila S. An update on the metabolic roles of carbonic anhydrases in the model alga Chlamydomonas reinhardtii[J]. Metabolites, 2018, 8(1): 22
    [6] Kitao Y, Harada H, Matsuda Y. Localization and targeting mechanisms of two chloroplastic β-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum[J]. Physiologia Plantarum, 2008, 133(1): 68-77
    [7] Samukawa M, Shen C, Hopkinson B M, et al. Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana[J]. Photosynthesis Research, 2014, 121(2-3): 235-249
    [8] 梅守华, 毕燕会, 周志刚. 缺刻缘绿藻碳酸酐酶(CA)基因的序列克隆及特征分析[J]. 水产学报, 2015, 39(5): 658-668 Mei S H, Bi Y H, Zhou Z G. Molecular cloning and characterization of carbonic anhydrase (CA) genes from Myrmecia incisa Reisigl H4301[J]. Journal of Fisheries of China, 2015, 39(5): 658-668(in Chinese)
    [9] Ye N H, Zhang X W, Miao M, et al. Saccharina genomes provide novel insight into kelp biology[J]. Nature Communications, 2015, 6: 6986
    [10] Deng Y Y, Yao J T, Wang X L, et al. Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction[J]. PLoS One, 2012, 7(6): e39704
    [11] Wang W J, Wang F J, Sun X T, et al. Comparison of transcriptome under red and blue light culture of Saccharina japonica (Phaeophyceae)[J]. Planta, 2013, 237(4): 1123-1133
    [12] Bi Y H, Zhou Z G. Absorption and transport of inorganic carbon in kelps with emphasis on Saccharina japonica[M]//Najafpour M M. Applied Photosynthesis-New Progress. Rijeka, Croatia: InTechOpen, 2016: 111-131.
    [13] Bi Y H, Li J L, Zhou Z G. Full-length mRNA sequencing in Saccharina japonica and identification of carbonic anhydrase genes[J]. Aquaculture and Fisheries, 2019, 4(2): 53-60
    [14] Starr R C, Zeikus J A. UTEX—the culture collection of algae at the University of Texas at Austin 1993 list of cultures[J]. Journal of Phycology, 1993, 29(S2): 1-106
    [15] Bouck G B. Fine structure and organelle association in brown algae[J]. Journal of Cell Biology, 1965, 26(2): 523-537
    [16] Ye R X, Yu Z, Shi W W, et al. Characterization of α-type carbonic anhydrase (CA) gene and subcellular localization of α-CA in the gametophytes of Saccharina japonica[J]. Journal of Applied Phycology, 2014, 26(2): 881-890
    [17] 乔亚明. 海带配子体α-碳酸酐酶2(CA2)的基因克隆、原核表达与亚细胞定位研究[D]. 上海: 上海海洋大学, 2018. Qiao Y M. Gene cloning, prokaryotic expression and subcellular localization of α-carbonic anhydrase 2(CA2) from the gametophytes of Saccharina japonica[D]. Shanghai: Shanghai Ocean University, 2018(in Chinese).
    [18] 陈晶, 王丽丽, 石微微, 等. 海带配子体中孢子形成相关蛋白(SRP)基因的克隆及其原核表达[J]. 水产学报, 2010, 34(8): 1165-1173 Chen J, Wang L L, Shi W W, et al. Cloning of SRP gene from the gametophytes of Laminaria japonica and its expression in Escherichia coli[J]. Journal of Fisheries of China, 2010, 34(8): 1165-1173(in Chinese)
    [19] 张艳敏. 对虾溶菌酶重组蛋白在大肠杆菌表达及包涵体复性研究[D]. 大连: 大连工业大学, 2014. Zhang Y M. Recombinant expression of shrimp lysozyme in Escherichia coli and refolding of shrimp lysozyme inclusion bodies[D]. Dalian: Dalian Polytechnic University, 2014(in Chinese).
    [20] 孙卫国, 郑本献, 熊志红, 等. 人血小板衍生生长因子BB亚型包涵体复性与纯化[J]. 生物技术通讯, 2018, 29(3): 382-386 Sun W G, Zheng B X, Xiong Z H, et al. Renaturation and purification of inclusion body of platelet-derived growth factor BB[J]. Letters in Biotechnology, 2018, 29(3): 382-386(in Chinese)
    [21] Wilbur K M, Anderson N G. Electrometric and colorimetric determination of carbonic anhydrase[J]. Journal of Biological Chemistry, 1948, 176(1): 147-154
    [22] Haglund M M, Ojemann G A, Hochman D W. Optical imaging of epileptiform and functional activity in human cerebral cortex[J]. Nature, 1992, 358(6388): 668-671
    [23] Verpoorte J A, Mehta S, Edsall J T. Esterase activities of human carbonic anhydrases B and C[J]. Journal of Biological Chemistry, 1967, 242(18): 4221-4229
    [24] Bhakta A, Bandyopadhyay M, Dasgupta S, et al. Effect of NaHS on carbonic anhydrase activity of human erythrocyte[J]. Asian Journal of Medical Sciences, 2016, 7(3): 23-27
    [25] Cock J M, Sterck L, Rouzé P, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae[J]. Nature, 2010, 465(7298): 617-621
    [26] Parisi G, Perales M, Fornasari M S, et al. Gamma carbonic anhydrases in plant mitochondria[J]. Plant Molecular Biology, 2004, 55(2): 193-207
    [27] Parisi G, Fornasari M, Echave J. Evolutionary analysis of γ-carbonic anhydrase and structurally related proteins[J]. Molecular Phylogenetics and Evolution, 2000, 14(3): 323-334
    [28] Moroney J V, Bartlett S G, Samuelsson G. Carbonic anhydrases in plants and algae[J]. Plant, Cell and Environment, 2001, 24(2): 141-153
    [29] Innocenti A, Supuran C T. Paraoxon, 4-nitrophenyl phosphate and acetate are substrates of α- but not β-, γ- and ζ-carbonic anhydrases[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(21): 6208-6212
    [30] De Luca V, Del Prete S, Carginale V, et al. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune[J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(21): 4970-4975
    [31] Vullo D, De Luca V, Del Prete S, et al. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis[J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(17): 3550-3555
    [32] Del Prete S, Vullo D, De Luca V, et al. Anion inhibition profiles of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae[J]. Bioorganic & Medicinal Chemistry, 2016, 24(16): 3413-3417
    [33] 张朝晖, 马晓舟. 一种嗜热型碳酸酐酶基因的克隆表达及酶学性质[J]. 工业微生物, 2015, 45(4): 1-6 Zhang Z H, Ma X Z. Cloning and expression of a thermophilic carbonic anhydrase and its enzymatic properties[J]. Industrial Microbiology, 2015, 45(4): 1-6(in Chinese)
    [34] Qu C F, He Y Y, Zheng Z, et al. Cloning, expression analysis and enzyme activity assays of the α-carbonic anhydrase gene from Chlamydomonas sp. ICE-L[J]. Molecular Biotechnology, 2018, 60(1): 21-30
    [35] Kisker C, Schindelin H, Alber B E, et al. A left-handed β-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila[J]. EMBO Journal, 1996, 15(10): 2323-2330
    [36] Ynalvez R A, Xiao Y, Ward A S, et al. Identification and characterization of two closely related β-carbonic anhydrases from Chlamydomonas reinhardtii[J]. Physiologia Plantarum, 2008, 133(1): 15-26
    [37] Tachibana M, Allen A E, Kikutani S, et al. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana[J]. Photosynthesis Research, 2011, 109(1-3): 205-221
    [38] Fromm S, Braun H P, Peterhansel C. Mitochondrial gamma carbonic anhydrases are required for complex I assembly and plant reproductive development[J]. New Phytologist, 2016, 211(1): 194-207
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许玲,毕燕会,周志刚.海带配子体γ-碳酸酐酶的基因克隆与功能鉴定[J].水产学报,2020,44(5):742~753

复制
分享
文章指标
  • 点击次数:1025
  • 下载次数: 1666
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-05-27
  • 最后修改日期:2019-10-23
  • 录用日期:2019-11-03
  • 在线发布日期: 2020-04-28
文章二维码