文章编号:1000-0615(2018)02-0204-12

DOI: 10.11964/jfc.20170210712

拟穴青蟹Sp-Sox14基因在胚胎发育和性腺发育过程中的表达

梁可蓥', 张子平2, 廖佳倩', 邹志华', 王艺磊1*

(1.集美大学水产学院,农业部东海海水健康养殖重点实验室,福建厦门 361021;

2. 福建农林大学动物科学学院,福建福州 350002)

摘要:为了解Sox14基因在拟穴青蟹胚胎发育和性腺发育过程中可能起到的调控作用, 实验从青蟹性腺转录组数据库中得到全长为2558 bp的Sp-Sox14 cDNA序列,该序列编码 一个包含427个氨基酸的蛋白,包含一个HMG-box。进化树分析表明,Sp-Sox14与其他节 肢动物的Sox14亲缘关系较近。实时定量PCR结果显示,Sp-Sox14在成蟹雌雄各组织中均 有不同程度的表达,其中在卵巢和雄蟹心脏中的表达量最高。在胚胎发育过程中,Sp-Sox14在复眼色素形成期的表达量显著高于其他时期。在性腺不同发育阶段,Sp-Sox14在 卵黄发生前期(O2)的表达量显著高于卵巢其他发育阶段;而在精巢发育过程中,其表达 量在成熟精子期(T3)高于精母细胞期(T1)和精子细胞期(T2)。推测其参与卵巢的前期发育 以及精子成熟等过程。整胚原位杂交结果显示,Sp-Sox14在青蟹胚胎复眼色素形成期阳 性信号定位于头部以及鄂足附近,在近孵化期定位于复眼附近,幼体孵出期则在头部仍 有少量信号,暗示其与青蟹神经器官的形成以及体节附肢的发生有关。 关键词:拟穴青蟹;Sp-Sox14;胚胎发育;性腺发育;基因表达

中图分类号:Q786; S968.25

文献标志码:A

早在1990年, Gubbay等^[1]在小鼠体内第一次 发现了Sry (Y染色体上性别决定区域, sex determining region of Y chromosome)基因,之后与其序 列中保守的HMG-box (高迁移率结构域, high mobility group box)具有高度相似性的Sox(sry-like high-mobility group box)基因家族相继被发现与证 实^[2-4]。HMG结构域蛋白中含有2到多个典型 HMG结构域,该结构域一般含有80个左右的氨 基酸残基,形成一个L型,并且含有3个a螺旋和 一个N端的B片层^[5],使得Sox蛋白能以空间特异 性的方式与DNA结合,从而调节靶基因的转录^[2]。 对脊椎动物的不同细胞及不同组织的Sox基因 的突变和敲除的大量研究表明, Sox基因编码的 蛋白作为一类重要的转录因子,对胚胎发育、 器官形成、性别决定[1,6]、神经系统形成[7-10]、骨 骼发育[11]和血细胞生成[12-13]等多个过程起着不可 或缺的作用。基于对Sox基因的完整HMG-box、 基因结构、氨基酸序列及其在不同发育过程的 广泛表达功能的比较,可将Sox基因分成A~J共 10个亚族^[14-16],其中,SoxB又可分为SoxB1和 SoxB2两个亚族。SoxB1(Sox1、Sox2和Sox3)作为 转录激活子,而SoxB2(Sox14和Sox21)作为转录 抑制子。SoxB2中的HMG-box结构域的C末端中 含有一个转录抑制域, 且Sox14比Sox21的转录抑 制效果更为强烈。通过该C末端转录抑制域, SoxB2与SoxB1竞争结合DNA或者与其他蛋白相 互作用,来调节神经系统的发育和分化[17]。神经 发生(神经元发育)始于胚胎期,此时神经前驱蛋 白能使Sox14和Sox21基因上调表达,干扰 SoxB1转录激活子的活性^[18]。Sox14作为转录阻遏 物,可能在脊髓和脑神经的腹侧中间神经特化 中产生作用,与Sox1-3拮抗从而促进神经细胞分

收稿日期: 2017-02-12 修回日期: 2017-04-09 资助项目:国家自然科学基金(31472266, 41676161, 31672681) 通信作者:王艺磊, E-mail: yileiwang@jmu.edu.cn

化^[19-20]。SoxB基因除了被发现在神经祖细胞有表 达以外,在神经嵴及其衍生的组织细胞也有表 达,神经嵴在胚胎随后的发育过程中,可迁移 至特殊区域,进一步发育形成外周神经系统以 及眼睛等重要器官结构^[21]。与脊椎动物相比,无 脊椎动物SoxB基因的研究甚少。有文献指出,在 黑腹果蝇(Drosophila melanogaster)胚胎形成过程 中,Sox14基因广泛且微量地表达^[22];三角涡虫 (Dugesia japonica)的SoxB基因特异表达于头部和 肠道,且对三角涡虫头部进行切除后,SoxB基因 的表达可参与促进头部和神经再生^[23];中华绒螯 蟹(Eriocheir sinensis)中发现一个SoxB2基因在性腺 中特异表达^[24]。有关拟穴青蟹(Scylla paramamosain)Sox14基因在性腺发育和胚胎发育中可能作 用的研究尚未报道。

拟穴青蟹隶属于甲壳纲(Crustacea),十足目 (Decapoda), 梭子蟹科(Portunidae), 青蟹属 (Scvlla),在我国主要分布于南方沿海各省海域。 由于其肉质细嫩鲜美、营养丰富、经济价值 高,且个体大、生长快、适应性较强等优点,已 成为我国东南沿海重要的海洋经济蟹类之一[25-26]。 目前人工养殖的苗种仍主要来自海区捕捞[27],近 十几年来青蟹养殖面积不断扩大,而可捕捞的 蟹苗资源越来越少, 苗种问题已成为青蟹养殖 的瓶颈,限制了青蟹养殖业的发展^[28],对青蟹胚 胎发育的研究将有助于其人工繁育的开展。大 部分蟹类在发育过程中存在变态现象,胚胎与 成蟹在形态上具有较大差异,同时神经器官和 生殖器官的结构也发生相应变化,故研究蟹类 胚胎发生发育的规律,对了解其体节分布、附 肢形成以及神经系统的形成有重要作用。蟹类 胚胎发育研究目前多侧重于形态学上的观察^[29], 胚胎发育的分子机制研究甚少,对于胚胎时期 神经系统的发生发育的分子机制的研究更是薄 弱。本实验室在前期的转录组中获得了拟穴青 蟹Sp-Sox14序列(GenBank登录号: FJ613627.1), 鉴于Sox家族在胚胎发育、性别决定、神经系统 发育等方面的作用,本实验首先对Sp-Sox14序列 进行生物信息学分析,同时结合实时定量PCR和 整胚原位杂交技术,研究Sp-Sox14基因在拟穴青 蟹各组织,性腺各发育阶段和胚胎发育中的 表达, 推测其在性腺发育和胚胎发育中的可能 作用。

1 材料与方法

1.1 实验材料

拟穴青蟹购自福建省厦门市集美农贸市场, 不同发育阶段性腺的分期参照本实验室已发表 的方法^[30]。不同发育阶段的雌雄青蟹各取5只, 成熟个体除取性腺外,另取肝胰腺、鳃、肌 肉、眼柄、胸神经节、脑神经节、胃、肠等组 织,立即放入液氮速冻过夜后转移置-80°C保存 备用。实验拟穴青蟹各期胚胎取自2016年1月和 2016年2月,分两批从漳州诏安县购入已受精拟 穴青蟹共15只,体长约10~13 cm,体质量为 330~500g。青蟹饲养于集美大学海水场,定期 进行干露促其抱卵,并用镊烫法去除青蟹单侧 眼柄,进一步促进其抱卵。按照陈锦民³¹¹的阶段 划分,将每一时期胚胎的一部分置于RNAlater, 4°C过夜后转至-20°C保存,用于实时定量 PCR实验;另一部分置于4%多聚甲醛(PFA, paraformaldehyde), 4°C固定过夜后, 用1×PBS洗 去PFA,并依次于70%、80%、90%、100%甲醇 中梯度脱水,每次20 min,最后于新的100%甲 醇,-20°C保存,用于整胚原位杂交实验。

RNA抽提试剂盒Total RNA Kit 2(OMEGA, USA); 逆转录试剂盒RevertAid First Strand cDNA Synthesis Kit (Lithuania, EU)与T7 RNA聚合酶 (Lithuania, EU)购自Thermo Scientific公司; AceQ®qPCR SYBR[®]Green Master Mix购自南京诺 唯赞公司; 10 × DIG-RNA Labeling Mix (Indianapolis, IN, USA)与Anti-Digoxigenin-AP Fab Fragments (Indianapolis, IN, USA)购自罗氏公司。

根据Sp-Sox14序列设计定量引物和原位杂交 引物及内参18S rRNA引物,交由上海捷瑞生物 工程有限公司合成(表1)

1.2 实验方法

生物信息学分析 序列同源性比对用 BLAST软件(http://blast.ncbi.nlm.nih.gov/Blast.cgi) 进行;用NCBI中的ORF finder (http://www.ncbi. nlm.nih.gov/gorf/gorf.html)进行开放阅读框确定及 序列翻译;使用Compute pI/Mw tool (http://www. expasy.org/tools/pi_tool.html)推测蛋白的等电点和 分子质量;用InterProScan sofware (http://www. ebi.ac.uk/Tools/pfa/iprscan5/)查找基因的保守结构 域;利用NetNGlyc1.0 Server (http://www.cbs.dtu.

	Tab. 1 Oligonucleotide primers used in this study						
引物名称	核酸序列(5'-3')	用途					
primer name	nucleotide sequence	usage					
Sp-Sox14 RT-F	GTTCACCTGTGCGACAACAC	荧光定量 PCR q-RT PCR					
Sp-Sox14 RT-R	GGTACTTGCTGTGGGGTTCGT						
18s rRNA-F	ATGATAGGGATTGGGGTTTCC						
18s rRNA-R	AGTAGCGACGGGCGGTGT						
Sp-Sox14- ISH-F	GTGGAGAAGGGGGCGAGTGT	整胚原位杂交 WISH					
Sp-Sox14- ISH-R	TGGGGCAGGGCTGATAGA						
T7-F	TAATACGACTCACTATAGG						

表 1 实验中使用的引物及序列

dk/services/NetNGlyc/)查找糖基化位点,NetPhos 3.1 Server (http://www.cbs.dtu.d k/services/NetPhos/) 查找磷酸化位点;采用SignalP 3.0 Server (http://www.cbs.dtu.dk/services/SignalP/)寻找信号 肽;TMHMM 2.0 Server (http://www.cbs.dtu.dk/ servi ces/TMHMM-2.0/)预测蛋白跨膜结构域;用 MEGA 7.0软件中的Neighboor-Joining(NJ)法构建 系统进化树。

总RNA提取与实时定量PCR 根据Total RNA Kit 2(OMEGA, USA)说明书操作方法,提 取青蟹胚胎各时期(卵裂期、囊胚期、原肠胚 期、无节幼体期、五对附肢期、七对附肢期、 复眼色素形成Ⅰ期、复眼色素形成Ⅱ期、复眼色 素形成Ⅲ期、近孵化期、孵化期)、不同组织(性 腺、心脏、肌肉、鳃、胃、肠、脑神经节、胸 神经节、肝胰腺、眼柄)和性腺发育不同时期(卵 巢发育时期:增殖期、卵黄发生前期、卵黄发 生早期、卵黄发生中期、卵黄发生晚期。精巢 发育时期:精母细胞期、精子细胞期、成熟精 子期)的总RNA。用分光光度计Nanodrop 2000 (Thermo Scientific, USA)测定RNA浓度和纯度, 同时取0.5 µL样品用1%琼脂糖凝胶电泳检测其完 整性; 取2 μg总RNA, 在逆转录前用DNase I处 理,然后根据逆转录试剂盒的具体操作说明, 利用随机引物合成cDNA第一条链,稀释适当倍 数用作定量PCR模板; 定量检测时每个样品做 5个平行,使用青蟹18S rRNA作为内参基因。基 因表达水平由相对表达量(relative quantification, RQ)的平均值±标准误(mesn±SE)表示;利用SPSS 20.0软件对数据进行单因素方差分析(One-Way ANOVA), P<0.05为显著性差异。

PCR扩增目的基因片段, 整胚原位杂交 目的产物经电泳检测,割胶回收后,连接到 PGEM-T载体, 使得目的片段的5'端带有T7启动 子。转化后进行单克隆检测以确认目的片段插 入方向; T7-F引物与目的基因正向引物(Sp-Sox14-ISH-F)能检测出的阳性克隆为反向插入; T7-F与目的基因反向引物(Sp-Sox14-ISH-R)能检测 出的阳性克隆为正向插入;然后提取质粒并测 序,并且分别用T7-F与目的基因正反向引物,以 质粒为模板进行PCR反应,以制备线性化 cDNA作为体外转录模板:利用T7 RNA聚合酶进 行体外转录制备正义(正向插入的cDNA为模 板)与反义(反向插入的cDNA为模板)RNA探针: 探针于-80°C保存备用。根据文献[32]中的方 法,进行整胚原位杂交实验。实验后使用德国 徕卡公司Leica DM5500B正置显微镜观察并拍照。

2 结果

2.1 Sp-Sox14基因序列分析

*Sp-Sox*14 cDNA全长2558 bp (图1),序列包括 77 bp的5'UTR,1284 bp的开放阅读框和1196 bp 的3'UTR (包括poly A尾)。3'UTR含有典型的加 尾信号AATAA。*Sp-Sox*14 cDNA序列可编码含427 个氨基酸的蛋白,预测的蛋白分子量约为47.43 ku, 等电点约为6.04。*Sp-*Sox14蛋白第50~116位氨基 酸为*Sox*基因家族保守结构域HMG-box。

SignalP分析未发现其有信号肽,THMHMM 分析其无跨膜区。NetPhos 3.1 Server预测显示其 含有40个丝氨酸磷酸化位点,17个苏氨酸磷酸化 位点和5个酪氨酸磷酸化位点。NetNGly 1.0 Serv-

1	TCGC	TTC	TAT	CTC	AGG	TTT	ГAG	GAC	TTG	AGA	CTT	GTA	CCT	AGT	GCT	TTA	ATA	GAC	TTT.	AA	60
61	CCAA	TTT	AGT	GAT	CAA.	Aat.	gtt T	gcc	aca	aag	cgt	aac	aga	tcg	ttc	cac	atc	gcc	cac	ca	120
1					4	M	L	Р - + -	Q	5	V	1	D	К	2	1	2	Р	1	1	10
121	саас	tca	ggg	agta	aat	E	tgg C	atc	tca	acta	agt v	cca	agc	aaa	ctc	cag	аас	tee D	tta v	ca	25
181	⊥ aogo	t ga	G too	v too	T	г		2 200	ي too	L	, ,	Q QQQ	n ogt	m	0 707	N N	≟ oot	T T	1 0 0 0	S ot	240
36	gega D	ر دور ۵	т	n n	gac, T	gaa K	gaa K	gса Ц	N	P	aaa N	н	v	gaa. K	geg R	P	aat M	N	دge ۸	F	240 55
2/1	teat	n aat	<u>1</u> t t a	۷ ate	±	n ant	n n	II aca	n	1	n	II tat	۷ د م م	n att	n n	1	M t a o	n	A aco		300
56	M	V	W	S	0	M	F	R	R	F	T	V	K	F	A	Р	D	M	gca H	N	75
301	acge	' agai	" gati	≚ ctc	v caa	gca	ret.	ogo.	aaa	gag	± atg	y gaa	gaa	cet.	gac	aga	gga	cca	geg	ge	360
76	A	E	T	S	K K	۵00 ۵	L	688 G	K	R	W	K	N	L	T	E	D	Q Q	R	۵	95
361	agcc	ata	cat	~ cca	aga	ggc	gga	aag	act	acg	tct	gct	gca	cat	 gca	aga	- ata	tcc:	aga	tt	420
96	Р	Y	Ι	Q	E	A	E	R	L	R	L	L	Н	М	Q	E	Y	Р	D	Y	115
421	ataa	ata	ccg	gcca	acg	caa	gaa	gac	aaa	atc	tgg	taa	ctc	taa	gtc	agt.	= gga	gaa,	ggg	gc	480
116	K	Y	R	Р	R	Κ	K	Т	K	S	G	Ν	S	Κ	S	V	Е	K	G	R	135
481	gagt	gtc	gaa	agc	taa,	gga	caa	gaa	cag	ttc	cag	cgt	taa	tgc	cat	caa	ggg	tgt	caa	gc	540
136	V	S	K	А	K	D	K	Ν	S	S	S	V	Ν	А	Ι	K	G	V	K	L	155
541	tgac	cgca	aga	ccc	atc	cag	ggc	gca	cgt	cac	cac	agg	tct	gtc	atc	cat	aaa	cca	caa	ca	600
156	Т	А	D	Р	S	R	А	Н	V	Т	Т	G	L	S	S	Ι	Ν	Н	Ν	K	175
601	agct	caaa	act	caa	gct	caa	gat	tga	caa	aaa	gtt	caa	gga	ctc.	gat	ccg	gaa	cac	aaa	ca	660
176	L	Κ	L	K	L	К	Ι	D	K	Κ	F	K	D	S	Ι	R	Ν	Т	Ν	Ν	195
661	acac	aca	cac	tat	gta	cgt	tcc	cat	cgc	gca	gtg	cac	gtc	gcc	cgc	tga	ggt	gcc	tgc	ca	720
196	Т	Η	Т	М	Y	V	Р	Ι	А	Q	С	Т	S	Р	А	Е	V	Р	А	Т	215
721	cgcc	caa	cga	gat	gcc	agc	ctc	gcc	cga	gag	cgc	ctc	cct	cta	tga	caa	сса	cgt.	gac	ca	780
216	Р	Ν	Е	М	Р	А	S	Р	Е	S	А	S	L	Y	D	N	Н	V	Т	Т	235
/81	ccac.	gtc	cte	cag	tag.	gag	cag	cag	ccg	cgca	agc	cte	tat	cag	CCC	tge	CCC	aga	caa	gg	840
230	1	≧ att.	≧ aati	≧ tto:	K t a a	≧ tot	≧ ata	5	ĸ	A	A	€ taa	1	<u>≥</u> + aa	r oot	A	P ata	U oot	N	E	200
256	p	E	T	v	rgg C	I	v	т	aaı T	E F	gag S	A	р	G	I	т	S	I	R R	gс Р	275
901	caga	r aaci	r ceti	r cet:	gte	ctc.	cac	cac	tøt.	cac	atc	etc	taa	aga	tga	cca	≚ tga	сда	cga	c.g	960
276	E	A	L	V	S	S	T	T	V	T	S	S	K	D	D	Н	D	D	D	D	295
961	acga	tga	tga	tga	tga,	gaa	gga	= tga	tgt	aaa	= aca	= gga	cat	tct.	gat	gta	taa	tcg	aaa	ac	1020
296	D	D	D	D	E	K	D	D	V	K	Q	D	Ι	L	М	Y	Ν	R	K	R	315
1021	gcca	tgc	ggt	gcg	gga	tga	agt	gtt	tgc	acc	tcg	acc	ggt	ccc	tcc	aac	ttc	cct	ctc	ca	1080
316	Н	А	V	R	D	Е	V	F	А	Р	R	Р	V	Р	Р	Т	S	L	S	S	335
1081	gttc	acg	cgc	ggc	tga	tcc	tcc	gcc	cat	caa	gat	gga	gcc	gct	gga	cat	caa	gca	gga	ac	1140
336	S	R	А	А	D	Р	Р	Р	Ι	Κ	М	Е	Р	L	D	Ι	K	Q	Е	Р	355
1141	cgcc	aac	gga	gtc	cgc.	gct	ggc	cga	tct	cga	ctc	cct.	gac	gga	cct	gct	cca	gat	acc	ct	1200
356	Р	Т	Е	S	А	L	А	D	L	D	S	L	Т	D	L	L	Q	Ι	Р	S	375
1201	ccga	ctt	caa	agt	cga	agt	cga	tga	aat	caa	ctc	tga	tct	cga	ctt	tga	cgc	tgt,	gtc	ca	1260
376	D	F	K	V	Е	V	D	Е	Ι	Ν	S	D	L	D	F	D	А	V	S	T	395
1261	cate	atc	ggg	gtca	aca	ctt	tga P	gtt	ctc	tga	cgt	gtc.	ggg	cat.	gtt ,	gag	tga P	tat	tgg	tg	1320
396	S	S	G	S	Н	F	E	F.	S	D	V.	S	G	M	L	<u>S</u>	D	1	G	V	415
1321	tgag	caa [.]	tga D	ctg [.]	ttg. w	ggc	cga D	cat T	cgg	tat	cat T	caa N	ctg	a IA	ACU	CCG	666	CAG	ենե	AG	1380
1281	CCCC		ע מדמי	С ТССі	и ССТ	A CAT	и ССТ	T CCM	б СТС	TCC	I TCC		^ ≏≏≏	CAC	CAT	тсл	CA		ΤΛΛ	۸C	427
1701	TTCC	ACT'	TCA.	AGT'	тат	CGA	CGT CTC	GUA GAG		ACC.		CAA	TGA	САС ТСТ	ΔGT	гса ста	оса ста	ACA ATC	TAA. TAC	AC TT	1440
1501	CATG	ATT(СТС	CGT	GTA	ATT	CTT	CAT	GTT	ATT.	ACA	TAT	ATT	ACT	ТАТ	AGG	AAT)	CAT	GAG	AT	1560
1561	ATGT	GGT	GGA'	TTG	ACC'	тст	CAT	ттс	AGT	GTA'	TTC	GAA	ATA	TAG	TCA	TAC	CGA	CAC	TCT	AG	1620
1621	GAAC	ATA	CAC	CAT	TAT.	AGT	GTT	GAA.	AAG	TGC	CAG	TTT	CAC	AGG	TGG	TCG	CGT	AAT.	ACA.	AA	1680
1681	CAAT	AAG	TTC	ACC'	TGT	GCG	ACA	ACA	CGC	TCC	CAG	AGG	ACG	TAA	TGT	TAA	GTG	CAT	TTT	TT	1740
1741	TTTC	ATC	TCA	CGA	GCT	GTT	TTA	TTA	CGT	TGT	CAT	CCC.	ATC	ACC.	AGT	GAC	TGC	AAG	CAT	CA	1800
1801	CTCA	TTT	CAT	GTA	TAC	ATC	GTT	ATT	TTC	ATC	ATT	ACA	TAA	ATG	GAG	CAT	TTT	TTT.	AAA	GC	1860
1861	CAAA	AGC	CAC	AAA	CCT	CCA	AAG	CCA	CGA	ACC	CAC	AGC.	AAG	TAC	CAC	TGA.	ACC	TGA	GGT	GG	1920
1921	CGCC	AGA	ACC	ATT	GCC.	ATT.	AAG	TTT	GAG	TTG	AGA	CGC	TGA	AGA	AGA	AAG	AAG	AAC	CAC	ΤT	1980
																	(冬	1	Fig	g.1)

1981	${\tt TCCGAAGAGCCATGGAACGGATCCCTCTCAAGTGTGCATTTAGTGGTTCATCATCTCTTC}$	2040
2041	${\tt GTTGATCTGCTCTTGAGAGGGTTTGTTTTGATTTCCTTGAGTAGTGAGACTGGGACTGTTG$	2100
2101	${\tt ATCGTTAGAGAGTCACTGATCCACACACAATACATACGCCGTTTGCTTTTGCTTGGGCG}$	2160
2161	AGTCAAGTTGAAGGGAAGGATAACGGTAACGTTTAGTACTTGAGGACACGGGAACTTCAG	2220
2221	${\tt GATATCAGAGCCTCAGTGTTATAATGTTAAGTTCTGGTCGTTCTCCTCACCAGTAAATTA}$	2280
2281	${\tt TTTCAATAACAGGAATTACCTCCTAACATAATTAGGCCCACCAACCA$	2340
2341	CCAACCCCCTGTCTCTAGTCTTTACGTTCAGGTTACTCCAGAGAAAGAA	2400
2401	${\tt AATGTATTTTAATCATTCGACGAAGAAGTTCTCCACAACGCATCCGATGGGCATTTAGTC}$	2460
2461	${\tt TGAAACGTGTGTACACAGATGAGCAGGACGCACACGGGCCTGGACAAGGAGCTGTTGTTG$	2520
2521	ACACTAGCTTGTAAGTCCCCCTCAAAAAAAAAAAAAAAA	

图 1 Sp-Sox14 cDNA全长及其编码的氨基酸序列

字体加粗表示起始和终止密码子;灰色阴影表示保守结构域HMG-box;糖基化位点由方框标示;磷酸化位点由双下划线标出

Fig. 1 The cDNA and deduced amino acid sequence of Sp-Sox14 from S. paramamosain

The initiation codon (atg) and the stop codon (taa) are all characterized in bold; the HMG-box is in gray; the glycosylation sites are presented with a frame; the phosphorylation sites are indicated in double underline

er预测其有3个糖基化位点。

使用MEGA 7.0软件对拟穴青蟹及其他18个 物种的Sox14氨基酸序列构建系统进化树,采用 NJ法分析,结果显示,拟穴青蟹的Sp-Sox14与盲 蝽(Lygus hesperus)和茧蜂(Fopius arisanus)聚为一 小支,之后与地中海实蝇(Ceratitis capitata)和黑 腹果蝇聚为一大支,而脊椎动物Sox14聚为另一 支(图2)。

图 2 根据19个物种构建的Sox14氨基酸序列的系统进化树

Sp-Sox14用三角形标出

Fig. 2 The phylogenetic tree of Sox14 amino acid sequences from different species

Sp-Sox14 is marked by triangle

2.2 Sp-Sox14 mRNA在胚胎各发育时期的表达

实时定量PCR结果表明, *Sp-Sox*14 mRNA在 青蟹胚胎各时期都有表达(图3), 但在复眼色素 形成1、2、3期表达量显著高于其他时期(*P*<0.05)。

图 3 Sp-Sox14 mRNA在胚胎各发育时期的表达情况

1. 卵裂期; 2. 囊胚期; 3. 原肠胚期; 4. 无节幼体期; 5. 五对附 肢期; 6. 七对附肢期; 7. 复眼色素形成Ⅰ期; 8. 复眼色素形成 Ⅱ期; 9. 复眼色素形成Ⅲ期; 10. 近孵化期; 11. 孵化期。* 代表 显著性差异(P<0.05)

Fig. 3 The expression of *Sp-Sox*14 mRNA during embryogenesis

cleavage; 2. blastula; 3. gastrula; 4. nauplius; 5. 5 pairs of appendages; 6. 7 pairs of appendages; 7. eye-pigment formation stage I ; 8. eye-pigment formation stage II ; 9. eye-pigment formation stageIII; 10. prehatching; 11. hatching; *represents significant difference (*P*<0.05)

2.3 Sp-Sox14 mRNA在雌雄各组织中的表达

以18S作为内参基因,实时定量PCR结果显示, *Sp-Sox*14在拟穴青蟹雌雄各组织中均有不同程度的表达(图4),其中在卵巢和雄蟹心脏中的表达量最高;在雌雄青蟹的肌肉中均有较高水平的表达; *Sp-Sox*14在雌蟹肝胰腺中的表达量显著高于雄蟹。

2.4 Sp-Sox14 mRNA在性腺各发育时期的表达

在卵巢不同发育阶段, *Sp-Sox*14的表达量在 O2期(卵黄发生前期)显著高于其他卵巢发育阶段 (*P*<0.05);在精巢不同发育阶段, *Sp-Sox*14的表 达量虽然呈上升趋势,但并无显著性差异(*P*>0.05); 同时发现, *Sp-Sox*14在卵巢发育O2期(卵黄发生 前期)显著高于性腺发育各时期(*P*<0.05)(图5)。

2.5 Sp-Sox14 整胚原位杂交

用地高辛标记的cRNA探针用于整胚原位杂 交的结果显示, *Sp-Sox*14在复眼色素形成期阳性 信号定位于胚胎头部以及复眼附近;在近孵化

图 4 Sp-Sox14 mRNA在雌雄各组织中的表达情况

性腺(卵巢和精巢);
 脑神经节;
 眼柄;
 糖;
 加细胞;
 m神经节;
 mp;
 <limp;
 <li

Fig. 4 The expression of *Sp-Sox*14 mRNA in

different tissues of female and male S. pamaramosain

1. ovary and testis; 2. brain; 3. eyetalk; 4. gill; 5. haemocytes; 6. hepatopancreas; 7. heart; 8. intestines; 9. muscle; 10. stomach; 11. thoracic. Bar with different letters indicates significant differences (P<0.05), the same below

图 5 Sp-Sox14 mRNA在性腺各发育时期的表达情况

1~5. 卵巢各发育时期: 1. 增殖期; 2. 卵黄发生前期; 3. 卵黄发 生早期; 4. 卵黄发生中期; 5. 卵黄发生晚期。6~8. 精巢各发育 时期: 6. 精母细胞期; 7. 精子细胞期; 8. 成熟精子期

Fig. 5 The expression of *Sp-Sox*14 mRNA during different stages of gonadal development

1-5 represents different stages of ovary development: 1. proliferation; 2. previtellogenesis; 3. primary vitellogenesis; 4. secondary vitellogenesis; 5. tertiary vitellogenesis. 6-8 represents different stages of testis development: 6. the spermatocyte stage. 7. the spermatid stage; 8. the mature sperm stage

期, Sp-Sox14阳性信号呈条带状位于复眼边缘, 同时亦有点状阳性信号分散在复眼之中;到孵 化期, Sp-Sox14阳性信号主要呈点状分布于复眼 之间头部位置(图版)。

3 讨论

在脊椎动物中已有大量的研究表明, Sox基 因家族参与动物性别分化、早期胚胎发育、神 经发育等多种重要生物过程,但Sox14基因在蟹 类中的研究尚未见报道。本研究在已获得拟穴 青蟹*Sp-Sox*14 全长cDNA的基础上,通过生物信 息学分析,确定其在第50~116位氨基酸处含有 *Sox*基因家族保守结构域HMG-box。进一步通过 系统进化树分析表明,青蟹与茧蜂和盲蝽聚为 一小支,再与果蝇和实蝇聚为一大支,表明节 肢动物的*Sox*14基因可能与哺乳动物有不同的进 化过程,有待进一步研究。

目前较多的研究着重于SoxB基因对于中枢 神经系统的早期建立及发育[33-35]。例如在小鼠和 鸡中, Sox14基因仅在大脑和脊髓的神经元中有 限地表达^[36],而在爪蟾中该基因只在下丘脑、背 侧丘脑和视顶盖中表达[37]。但有一些研究表明, SoxB基因也可能参与性腺发育过程。许宝红等^[38] 发现Sox14基因在成熟大鲵(Megalobatrachus davidianus)的性腺中表达量远高于其他组织, 普晓梅^[9] 也发现, Sox14在大鲵性腺中高表达,并随性腺 的发育表达量增加。林浴霜等[40]发现, 文昌鱼 (Branchiostoma belcheri)的SoxB2在雄性生殖上皮 细胞和生精细胞中有少量表达,在雌性的卵母 细胞细胞质中有高表达。中华绒螯蟹的SoxB2-1 mRNA高表达于精原细胞和精母细胞,而蛋白则 在精细胞和精子中表达[24]。本研究结果显示,青 蟹的Sp-Sox14基因在雌蟹卵巢中的表达量远高于 其他组织,并在卵黄发生前期表达量最大,但 在神经器官中也有少量表达。姚波等[4]发现,斜 带石斑鱼(Epinephelus coioides)中的一个SoxB基因 在脑组织及未发育成熟的卵巢中大量表达,而 在发育成熟的卵巢中几乎没有表达。Sp-Sox14与 其有着类似表达模式,推测其可能参与卵巢的 发育过程。根据上述研究结果, Sp-Sox14氨基酸 序列虽然在HMG-box结构上与其他物种的 Sox14高度保守,但该基因的表达和功能在不同 生物中,尤其是高等脊椎动物与低等无脊椎动 物有所不同,推测造成这种结果的原因可能与 物种进化过程中受到的环境压力不同有关。

如前所述, SoxB对于中枢神经系统的早期 建立和发育是不可或缺的^[34-35]。SoxB2中的 Sox14和Sox21两个基因作为转录阻遏物,表达于 发育中的中枢神经系统,与SoxB1拮抗从而促进 神经细胞分化^[17, 20]。上述研究结果多以高等脊 椎动物为研究对象,在较低等的脊索动物和节 肢动物中,有研究发现SoxB基因也发挥同样的功 能。如文昌鱼胚胎发育过程中, SoxB2出现于神 经外胚层,之后SoxB2出现于发育中的神经管; 成体文昌鱼中Sox14的转录产物都在神经索中检 测到,暗示了SoxB2在中枢神经系统发育中的功 能保守性^[40]。在蜜蜂(Apis mellifera)的胚胎发育后 期, SoxB2主要在中枢神经和脑中表达^[35]。在黑 腹果蝇的神经系统中, Sox14基因对于树突和轴 突的形成和神经元数量的微调有重要作用^[42]。节 肢动物的神经系统在胚胎时期及幼体阶段对调 控其体节分布、附肢的组成有密切的关系^[43]。在 青蟹胚胎复眼色素形成期,腹部尚未退化,与 头胸部也尚未完全愈合,其神经系统为梯状神 经系统,神经节不愈合[44],虽然胚胎不能营自由 生活,但已经具有7对附肢以及相关的身体分 节,本研究结果显示,Sp-Sox14基因在复眼色素 形成期的表达量远远高于其他胚胎发育时期, 推测Sp-Sox14基因在此时参与青蟹胚胎的神经发 育与分化、复眼视神经的形成和调控身体分节。

青蟹的胚胎发育需经历卵裂期、囊胚期、 原肠胚期、无节幼体期、五对附肢期、七对附 肢期、复眼色素形成期、近孵化期、孵化期等 9个阶段^[31]。甲壳动物的复眼除了具有视觉功能, 还有着重要的神经、激素调节作用[31]。在青蟹胚 胎复眼色素形成期的这三个阶段,2个视叶神经 节与大、小触角神经节合并成脑,附肢的雏形 出现,胸腹褶已分开形成胸部和腹部,并且腹 部已开始分节^[31],实时定量PCR结果显示,Sp-Sox14 mRNA在复眼色素形成三个时期的表达量 显著高于其他胚胎发育时期,推测Sp-Sox14参与 了这一系列的特征发生。整胚原位杂交结果表 明, Sp-Sox14 mRNA在复眼色素形成期阳性信号 大量定位于幼体头部,并呈长棒状分布,少量 点状阳性信号分布于颚足附近。参考以往学者 对青蟹胚胎发生的形态研究,头部阳性信号定 位的位置可认定为脑部^[45-46],推测此阶段Sp-Sox14可能参与了脑神经的形成,并且可能参与 调控身体及附肢的分节。在近孵化期阶段,有 少量Sp-Sox14阳性信号呈长条状分布于复眼周 围,此时胚胎第一颚足已明显分节^[45],复眼视叶 长度达到卵径一半,头胸部附肢发育基本完 成, 推测此阶段Sp-Sox14可能参与调控附肢的分 节及发育。在幼体孵化出膜后,仍有极少量的 Sp-Sox14 mRNA阳性信号分散于幼体复眼及头 部,推测Sp-Sox14可能参与青蟹的神经及其分泌 激素的调节,为后续变态发育提供条件。

本研究根据拟穴青蟹Sp-Sox14在性腺不同发 育时期的表达及在胚胎各时期的表达与定位, 初步推测其在拟穴青蟹的神经发育和分化过程 中以及在性腺发育过程中起着一定的作用,为 甲壳动物胚胎时期神经系统发育和性腺发育的 研究奠定了基础。

参考文献:

- [1] Gubbay J, Collignon J, Koopman P, *et al.* A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes[J]. Nature, 1990, 346(6281): 245-250.
- [2] Harley V R, Lovell-Badge R, Goodfellow P N. Definition of a consensus DNA binding site for SRY[J]. Nucleic Acids Research, 1994, 22(8): 1500-1501.
- [3] Denny P, Swift S, Brand N, *et al.* A conserved family of genes related to the testis determining gene, *SRY*[J]. Nucleic Acids Research, 1992, 20(11): 2887.
- [4] Whitfield L S, Lovell-Badge R, Goodfellow P N. Rapid sequence evolution of the mammalian sex-determining gene SRY[J]. Nature, 1993, 364(6439): 713-715.
- [5] Weiss M A. Floppy SOX: mutual induced fit in HMG (high-mobility group) box-DNA recognition[J]. Molecular Endocrinology, 2001, 15(3): 353-362.
- [6] Wegner M. From head to toes: the multiple facets of Sox proteins[J]. Nucleic Acids Research, 1999, 27(6): 1409-1420.
- [7] Hargrave M, Wright E, Kun J, *et al.* Expression of the *Sox*11 gene in mouse embryos suggests roles in neuron-al maturation and epithelio-mesenchymal induction[J]. Developmental Dynamics, 1997, 210(2): 79-86.
- [8] Kamachi Y, Uchikawa M, Collignon J, et al. Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction[J]. Development, 1998, 125(13): 2521-2532.
- [9] Rex M, Orme A, Uwanogho D, et al. Dynamic expression of chicken Sox2 and Sox3 genes in ectoderm induced to form neural tissue[J]. Developmental Dynamics, 1997, 209(3): 323-332.
- [10] Uwanogho D, Rex M, Cartwright E J, et al. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development[J]. Mechanisms of Development, 1995, 49(1-2): 23-36.

- [11] Ng L J, Wheatley S, Muscat G E, et al. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse[J]. Developmental Biology, 1997, 183(1): 108-121.
- [12] Oosterwegel M, Van de Wetering M, Clevers H. HMG box proteins in early T-cell differentiation[J]. Thymus, 1993, 22(2): 67-81.
- [13] Schilham M W, Clevers H. HMG box containing transcription factors in lymphocyte differentiation[J]. Seminars in Immunology, 1998, 10(2): 127-132.
- [14] Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators[J]. Developmental Biology, 2000, 227(2): 239-255.
- [15] Schepers G E, Teasdale R D, Koopman P. Twenty pairs of *Sox*:extent, homology, and nomenclature of the mouse and human *Sox* transcription factor gene families[J]. Developmental Cell, 2002, 3(2): 167-170.
- [16] Koopman P, Schepers G, Brenner S, *et al.* Origin and diversity of the SOX transcription factor gene family: genome-wide analysis in *Fugu rubripes*[J]. Gene, 2004, 328: 177-186.
- [17] Uchikawa M, Kamachi Y, Kondoh H. Two distinct group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken[J]. Mechanisms of Development, 1999, 84(1-2): 103-120.
- [18] Malas S, Duthie S, Deloukas P, et al. The isolation and high-resolution chromosomal mapping of human SOX14 and SOX21: two members of the SOX gene family related to SOX1, SOX2, and SOX3[J]. Mammalian Genome, 1999, 10(9): 934-937.
- [19] Hargrave M, Karunaratne A, Cox L, et al. The HMG box transcription factor gene Sox14 marks a novel subset of ventral interneurons and is regulated by sonic hedgehog[J]. Developmental Biology, 2000, 219(1): 142-153.
- [20] Sandberg M, Källström M, Muhr J. Sox21 promotes the progression of vertebrate neurogenesis[J]. Nature Neuroscience, 2005, 8(8): 995-1001.
- [21] Hong C S, Saint-Jeannet J P. Sox proteins and neural crest development[J]. Seminars in Cell & Developmental Biology, 2005, 16(6): 694-703.
- [22] Sparkes A C, Mumford K L, Patel U A, et al. Character-

ization of an SRY-like gene, *DSox*14, from *Drosophila*[J]. Gene, 2001, 272(1-2): 121-129.

- [23] Dong Z M, Shi C Y, Zhang H X, et al. The characteristics of sox gene in Dugesia japonica[J]. Gene, 2014, 544(2): 177-183.
- [24] Liu Z Q, Jiang X H, Qi H Y, et al. A novel SoxB2 gene is required for maturation of sperm nucleus during spermiogenesis in the Chinese mitten crab, *Eriocheir sinen*sis[J]. Scientific Reports, 2016, 6: 32139.
- [25] 林琪,李少菁,黎中宝,等.中国东南沿海青蟹属 (Scylla)的种类组成[J].水产学报,2007,31(2):211-219.
 Lin Q, Li S J, Li Z B, et al. Species composition in genus Scylla from the coast of Southeast China[J]. Journal of Fisheries of China, 2007, 31(2):211-219(in Chinese).
- [26] 王桂忠, 叶海辉, 李少菁. 青蟹(*Scylla* spp.)养殖现状及 拟穴青蟹(*S.paramamosain*)种群生物学研究[J]. 厦门 大学学报(自然科学版), 2016, 55(5): 617-623.
 Wang G Z, Ye H H, Li S J. Status of mud crabs(*Scylla* spp.) farming and studies on the population biology of *S.paramamosain*[J]. Journal of Xiamen University (Natural Science), 2016, 55(5): 617-623(in Chinese).
- [27] 王桂忠, 叶海辉, 李少菁. 福建青蟹产业发展现状与对策[J]. 福建水产, 2012, 34(2): 87-90.
 Wang G Z, Ye H H, Li S J. Status and suggestions of mud crab aquaculture in Fujian Province[J]. Journal of Fujian Fisheries, 2012, 34(2): 87-90(in Chinese).
- [28] 朱小明, 邹清, 李少菁, 等. 我国南方沿海虾塘的青蟹
 养殖[J]. 厦门大学学报(自然科学版), 2006, 45(S2):
 256-260.

Zhu X M, Zou Q, Li S J, *et al.* Aquaculture of the mud cra (*Scylla* spp.) in inshore shrimp ponds throughout southern China[J]. Journal of Xiamen University (Natural Science), 2006, 45(S2): 256-260(in Chinese).

- [29] 薛俊增, 堵南山, 赖伟. 三疣梭子蟹活体胚胎发育的观察[J]. 动物学杂志, 1998, 33(6): 45-49.
 Xue J Z, Du N S, Lai W. Studies on the embryonic development of *Portunus trituberculatus*[J]. Chinese Journal of Zoology, 1998, 33(6): 45-49(in Chinese).
- [30] Dai Y B, Han K H, Zou Z H, et al. SUMO-1 of mud crab (Scylla paramamosain) in gametogenesis[J]. Gene, 2012, 503(2): 260-268.
- [31] 陈锦民. 锯缘青蟹Scylla serrata (Forskål)胚胎发育的基础研究[D]. 厦门: 厦门大学, 2005: 1-116.
 Chen J M. Foundationl studies on the embrynic develop-

ment of the mud crab, *Scylla serrata* (Forskål)[D]. Xiamen: Xiamen University, 2005: 1-116(in Chinese).

[32] 陈仕海,蔡明夷,张子平,等.基于dnd基因标记的大黄 鱼原始生殖细胞发生发育的初步研究[J].水产学报, 2015, 39(9): 1273-1282.

Chen S H, Cai M Y, Zhang Z P, *et al.* Preliminary studies on specification and development of the primordial germ cells from large yellow croaker by *dnd* gene[J]. Journal of Fisheries of China, 2015, 39(9): 1273-1282(in Chinese).

- Bergsland M, Werme M, Malewicz M, et al. The establishment of neuronal properties is controlled by Sox4 and Sox11[J]. Genes & Development, 2006, 20(24): 3475-3486.
- [34] Jaillon O, Aury J M, Brunet F, et al. Genome duplication in the teleost fish *Tetraodon nigroviridis* reveals the early vertebrate proto-karyotype[J]. Nature, 2004, 431(7011): 946-957.
- [35] Wilson M J, Dearden P K. Evolution of the insect Soxgenes[J]. BMC Evolutionary Biology, 2008, 8: 120.
- [36] Hargrave M, James K, Yamada T, et al. Sox14 maps to mouse chromosome 9 and shows no mutations in the neurological mouse mutants ducky and tippy[J]. Mammalian Genome, 2000, 11(3): 231-233.
- [37] Cunningham D D, Meng Z, Fritzsch B, et al. Cloning and developmental expression of the SoxB2 genes, Sox14 and Sox21, during Xenopus laevis embryogenesis[J]. The International Journal of Developmental Biology, 2008, 52(7): 999-1004.

[38] 许宝红,肖调义,肖真明,等.大鲵2个Sox基因HMGbox的克隆及分析[J].湖南农业大学学报(自然科学 版),2012,38(1):73-77.

Xu B H, Xiao T Y, Xiao Z M, *et al.* Cloning and sequence analysis of HMG-box of two *Sox* genes in *Andrias davidianus*[J]. Journal of Hunan Agricultural University (Natural Sciences), 2012, 38(1): 73-77(in Chinese).

- [39] 普晓梅. 大鲵性腺发育及Sox14基因表达特性研究[D].
 杨凌: 西北农林科技大学, 2016: 1-46.
 Pu X M. Gonad development and research of Sox14 gene in Andrias davidianus[D]. Yangling: Northwest A&F University, 2016: 1-46(in Chinese).
- [40] 林浴霜,陈冬艳,范秋声,等.关于青岛文昌鱼SoxB2和 SoxC基因的研究:进化保守性分析[J].中国科学C辑:

生命科学, 2009, 52(9): 813-822(in Chinese).

Lin Y S, Chen D Y, Fan Q S, *et al.* Characterization of *SoxB2* and *SoxC* genes in amphioxus (*Branchiostoma belcheri*): implications for their evolutionary conservation[J]. Science in China Series C: Life Sciences, 2009, 52(9): 813-822(in Chinese).

 [41] 姚波,周莉,桂建芳.斜带石斑鱼Sox3基因cDNA的克
 隆及其时空表达特征分析[J].高技术通讯,2003, 13(5):74-81.

> Yao B, Zhou L, Gui J F. Studies on cDNA cloning and temporal and spatial expression of *Sox3* gene in grouper *Epinephelus coioides*[J]. High Technology Letters, 2003, 13(5): 74-81(in Chinese).

- [42] Osterloh J M, Freeman M R. Neuronal death or dismemberment mediated by Sox14[J]. Nature Neuroscience, 2009, 12(12): 1479-1480.
- [43] Dove H, Stollewerk A. Comparative analysis of neurogenesis in the myriapod *Glomeris marginata* (Diplo-

poda) suggests more similarities to chelicerates than to insects[J]. Development, 2003, 130(10): 2161-2171.

- [44] Harzsch S, Dawirs R R. Neurogenesis in larval stages of the spider crab *Hyas araneus* (Decapoda, Brachyura): proliferation of neuroblasts in the ventral nerve cord[J]. Roux's Archives of Developmental Biology, 1994, 204(2): 93-100.
- [45] 韦受庆, 罗远裕. 青蟹胚胎发生的研究[J]. 热带海洋, 1986, 5(3): 57-62.
 Wei S Q, Luo Y Y. A study of the embryonic development of *Scylla serrata* (Forskål)[J]. Tropic Oceanology, 1986, 5(3): 57-62(in Chinese).
 [46] 薛俊增. 三疣梭子蟹胚胎期中枢神经系统的发生和发
- [40] 中夜泪. 二元被了蛋茄油为中枢杆丝系统的发生和发育[J]. 动物学研究, 2005, 26(2): 184-189.
 Xue J Z. Neurogenesis and development of the central nervous system in the embryo stage of swimming crabs, *Portunus trituberculatus*[J]. Zoological Research, 2005, 26(2): 184-189(in Chinese).

Expression analysis of *Sp-Sox*14 gene during embryonic and gonadal development in *Scylla paramamosain*

LIANG Keying¹, ZHANG Ziping², LIAO Jiaqian¹, ZOU Zhihua¹, WANG Yilei^{1*}

(1. Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China;

2. College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract: In this study, a full-length 2558 bp *Sp-Sox*14 cDNA sequence was obtained from *Scylla paramamosain* gonadal transcriptome database. The encoded protein consists of 427 amino acids and includes an HMG box domain. Phylogenetic tree analysis showed that *Sp-Sox*14 was closely clustered with Sox14 of other arthropods. Quantitative real-time PCR displayed that *Sp-Sox*14 had different expression levels in different tissues from mature male and female crabs with the highest expression in ovary and the heart of male crabs. During embryogenesis, *Sp-Sox*14 expression was the highest in eye-pigment formation stage. During the different stages of ovarian development, *Sp-Sox*14 was expressed at the highest level in previtellogenesis stage (O2) and which was significantly higher than other stages. During the testis development, the expression level of *Sp-Sox*14 was higher in mature sperm stage (T3) than in spermatocyte stage (T1) and spermatid stage (T2). It was speculated that *Sp-Sox*14 was involved in the early development of ovary and the process of sperm maturation. The whole mount *in situ hybridization (WISH)* results indicated that the positive signals of *Sp-Sox*14 were mainly distributed in the head and near the maxillipede at eye-pigment formation stage, and near the compound eyes at prehatching stage. A small number of *Sp-Sox*14 positive signals were still present in the head and near the appendages at hatching stage. The results of *WISH* implied that *Sp-Sox*14 was involved in the formation of the nervous organ as well as related to the occurrence of somite appendages.

Key words: Scylla paramamosain; Sp-Sox14; embryogenesis; gonadal development; gene expression

Corresponding author: WANG Yilei. E-mail: ylwang@jmu.edu.cn

Funding projects: National Science Foundation of China (31472266, 41676161, 31672681)

图版 Sp-Sox14整胚原位杂交结果

Sp-Sox14反义链杂交结果:1和1'.复眼色素形成期;3和3'.近孵化期;5和5':孵化期;1'右上小图为图中圈出部分放大。Sp-Sox14正义链杂交结果:2.复眼色素形成期;4.近孵化期;6.孵化期。黑色箭头标示的为Sp-Sox14阳性信号

Plate Whole mount in situ hybridization of Sp-Sox14

The positive signal of Sp-Sox14: 1 and 1'. eye-pigment formation stage; 3 and 3'. prehatching stage; 5 and 5'. the hatching stage. The counterparts (framed) in 1, and 1' are the larger magnification. The negative signal of Sp-Sox14: 2. eye-pigment formation stage; 4. prehatching stage; 6. hatching stage. The black arrows point to the positive signals of Sp-Sox14