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A numerical model for predicting the fishing
operation status of tuna longlines

WAN Rong, CUI Jiang-hao, SONG Xie-fa, TANG Yan-li, ZHAO Fen-fang, HUANG Liu-yi
( Fishertes College, Ocean University of China, Qingdav 266003, China)
Abstract : In this paper, ropes are modeled as an infinitely flexible, straight rope e¢lement, and then the whole longline is able (o be
regarded as an assembling of the rope elements connecting each other at their ends by a frictionless hinge. A group of nonlinear basic
simultaneous equations describing the equilibrium state of longlines are deduced, based on a finite element formulation. Newton-
Raphson method is employed to get the numerical solution due to the non-linearity. Further. the loading and shape iterative procedure
are used to model the coupling relationship between the longline shape and hydrodynamic forces. The results suggested that this
method has excellent global convergence and good accuracy for predicting the tension and shape of tuna longlines during fishing

operation.
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1 Introduction

There are concerns about the distant water
fisheries with the decline of the marine fisheries
resources offshore and inshore due to over-fishing.
The tuna fishery is one of the hot topics and becomes
an important part of the world pelagic fisheries since
tunas and tuna-like species, caught mainly by distant
water longlines and purse seines, have high meat
quality and remarkable economy value, especially in
Japanese sasimi market. Tuna stocks have been found
in the Pacific, Atlantic, and Indian Oceans and the
total yield of its four main species has been
maintained at the level of about 4 million tons a year
in the recent years''! . Tuna fishery of China started in
1987 and achieved remarkable progress. By the year
of 1999, the total fishing production of tuna had
exceeded 20 000 tons and more than 200 longliners are
in operation in the three oceans of the world!?! |

Longline, as a type of the efficient conventional
fishing gear, has been widely used in commercial tuna
fishery because of the simplicity in its design,
construction and operation and of the low investment
cost as well as the low energy consumption. A tuna
longline consists of mainline, branch-lines, hooks,
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buoy lines and buoys. In order to capture fish with
satisfaction, the hooks have to reach the water depth
where tunas live or are swimming during fishing
operation by adjusting the gear configuration and
correctly setting the gear. Therefore, it is very
important to develop a tool of predicting the depth that
the hooks possibly reach during fishing operation.

So far, the tension and shape of longlines have
not been
complexity . Generally, the setting depth of the hooks

solved theoretically because of its

is estimated by assuming that the distance of mainline
between the two neighboring buoys maintains
unchangeable and that the mainline forms a catenary
during operation[’*‘(’]. In addition, the prediction of
longline behavior can also be done by flume tank
testing and field experiment! ™% .

In this paper, the longline is considered as a
flexible rope system and a method based on a finite
element formulation is used to analyze the tension and
shape of the longline. The aim of this study is to find
a more economical and practical tool to replace the
model test and field experiment, which are laborious,
time-consuming and expensive, for optimizing long-
line design and construction .
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2 Mathematical model

2.1 Modeling of the rope

The longline is a regular fishing gear that is
mainly composed of ropes and hooks. The ropes can
be modeled by a series of straight discrete rope
elements (Fig.1, hereatter referred to as rope element

912 connected each other at their ends

or element)!
by non-frictional hinges. If each end of the element is
called as a node, the whole structure can be regarded
as an assembling of the elements articulated at their

nodes.
buoy

branch-line
J

v, J
u
—t
Y initial state

i
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Fig.1 Movement of a straight rope element
X, Y and Z are global coordinates system. u, v and w denote the
nodal displacements of the element in the direction of the

X, Y and Z-axes. respectively. The subscripts 7
and j indicate the two ends of the element

2.2 Basic hypotheses

In order to simplify the mathematical model, the
following assumptions for the physical characteristic of
the rope should be made!® .

(1) The tension only acts in the direction of the
axis of element and keeps constant across the entire
cross-section and along the element length;

(2) The rope is completely flexible and easily
bent without resistance;

(3) The rope is elastic and isotropic, and the
relationship between the tension and strain follows
Hooke’ s law;

(4) The relative displacements are equal for all
points on the cross-section of the element, and the
cross-sectional area  remains constant  during
deformation.

2.3 Basic equations

When a longline is set in a uniform current, the

rope elements comprising it will incur significant
relative displacement from any initial state to a
deformed state (Fig. 1). According to the above

hypotheses, the total potential energy || for the

discrete system can be expressed as''' %

= —éF,Dl i\ﬁ T A L(D) - Ly} —LI ﬁjﬁnz (D
where F, is the equivalent nodal loading on the i-th
node, D), is the displacement of the i-th node, T, is
the axial force of the g-th element, L, is the initial
length of the g-th element, L, is the length of the g-
th element after deformation, A, is cross-section area
of the g-th element, E is the Young’ s modulus of
the material, f is the nodal degree of freedom, and m
is the total number of the :ment. The term in
{L,(D;) - L} Eguation (1) -epresents the elastic
elongation of the g-th element ¢ e to tensile forces or
finite displacements of the ¢ cments during large

deformation, and can be explicily written as
L(D,) = Lo=v X(u)?+ Y(v)’+ Z(w)* -

VX+Yi+ 22 (2)
where
Xo=X-X,, Yo=Y,-Y,,Zy=7,-2, (3)
X(u)=(X, - X)+(u—-un)
Y('U)=(Y}'—Y,')+(Uj—vi) (4)
Z(w)=(Z - Z;) + (w, — w;)
and X, Y and Z are the nodal coordinates of the
element in the direction of the X, Y and Z-axes in a
global frame of reference. The X and Z-axes point to

the current and water depth respectively, the Y-axis is
vertical to both the X and Z-axes. As shown in
Fig.1, the variables u, v and « denote the nodal
displacements of the element in the direction of the
X, Y and Z-axes, respectively. The subscripts i and
j indicate the two ends of the element. Equations(2 -
4) describe the strain-displacement relationship for the
elements.

For the purpose of determining the equilibrium
state of the instable rope system, the principle of
minimum potential energy is applied. According to
the principle, the total potential energy becomes an
absolute minimum when the system is under
equilibrium condition, i.e.,d11/8D; =0 and o [1/
9T, =0. Then the following basic equations for this

system can be obtained;
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The elements in the coefficient matrix in
Equation(5) denote the direction cosines of the g-th
element after deformation with respect to the X, Y
and Z-axis, respectively. Equation (6) gives the
relationship between element tension and nodal
displacement. Consequently, the nonlinear Equations
(5, 6) clearly constitute the basic simultaneous
equations for ( f + m ) degrees of freedom with
unknowns of nodal displacement D; and element
tension T, for the static response of the longlines.
2.4 Shape-dependent hydrodynamic loading

In Equation(5), the external force ( F) acting
on the elements includes those resulting from gravity
(weight and buoyancy),
other kinds of
hydrodynamic loading containing lift ( R, ). drag

hydrodynamic loading and
external action. Since the
(R,) and transverse force ( Ry ) are shape-
difficult to be calculated
theoretically. When neglecting the hydrodynamic
interaction and interference between the elements, that

dependent, it is

is, it seemed as if the elements in the whole structure
system are independent of each other in a current
field, the hydrodynamic forces acting on each rope

element can be estimated by the following
formulas' ' |
Ri = oClLV? (7)
R, =5 pCidLV? (8)
Ry = é oCdlV? (9)

where R;,, R, and Ry are the hydrodynamic drag, lift

and transverse force acting on the elements,

respectively. d is the cross-sectional diameter of the
1" is the relative
velocity of the flow, and ¢ is the fluid density. The
hydrodynamic  lift,
coefficients ( C;, €, and C;,) for ropes are given by
[

element, 1 is the element length,
drag and transverse force

the Miyazaki mode
Cp = Cpoll = sin?Gcos’d) (10)

C/I = C[m“:”f_f (12)
V'l = cos*fcos” S

where (), is the coetficient of drag when the axis of
the element is vertical to the current, o is the
deflected angle, and @ is the inclined angle of the
element, as shown in Fig.2. The hydrodynamic force
coefficients usually depend on Reynolds number Re
calculated with the twine diameter. Because the Re is
within the range of 6 x 10? to 2 x 10" in this study. let

the €, equal 1.3,

]
1
)
: frame
]
]

v

Y

current
—_—

Fig.2 Schematic diagram of rope position relative to
the current
& 15 the deflected angle, and
¢ 15 the inclimation angle of the element

2.5 Solution

Since the simultaneous Equations (5, 6) are
highly nonlinear, Newton-Raphson method '' ="' was
adopted to find the numerical solution of the problem
the linearized basic

in this paper. As a result,

equation can be expressed as:

{ I Y @rl

9 \ .

x~:—ll aDA]) e=1 aTAT +f1(D17T ) 0

<‘i:~) r \\ @{ .

= ap it = aTAT D, T ) =0 -
J " 2

\“%AD:_FE%'FIUAT //+,,,(D ) 0

=1 aDl =1

where the (D7, T,) and (AD], AT,) denote the
solution and the correction obtained in the r-th step of
the iteration. Therefore, it i1s certain that the solution
in the (r 4+ 1)-th step of the iteration can be written as
(Dj + ADi, Ty + AT,) .
into a stmpler matrix form, then we have

[ /V“ le] {AD, }r
Ny Npllar,) —

Transforming Equations 13
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whereby the submatrix [ NV, ( D,, TK)] corresponds
to the geometrical stiftness matrix; [ N,(D,, T,) ] is
the equilibrium matrix of the
deformation. | Ny | = diag( — L

system  after
7,(,/EA,._,) ; and [ Ny |

&
is the compatibility matrix related to [ N}, ] by-"~ !
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[Nyl =D, ]T (15)

The total stiffness coefficient matrix is a function
of the tension and nodal coordinates of elements in the
global system after deformation. Superscript 7 of
Equation(15) denotes the transposition of the matrix .
So, following the computing flowchart shown in Fig.
3. a desired solution can be converged by the
combination of the shape iteration cycle with the
loading iterations procedure.

l Calculate the hydrodynamic forces R q (RD, RL, RH) j

F—)I Form the tangent stiffness matrix of the system j‘——

¥

r Find the increment of nodal displacements and element tensions 1

1

No
[ the increment of nodal displacements and element tensions=<e ? ]———

No
——L Recalculate the hydrodynamic forces R, and (R(y.)-R)=<#,? -I

Yes

| Visualize the calculation results and modify initial design plan ]

Fig.3 Computer support in the design of long line

2.6 Numerical example and model test

To validate the numerical model presented
above, as an illustrative example, the fishing
operation status of a simplitied tuna longline model set
in a uniform current was analyzed, and the
corresponding model test was conducted in a flume
tank at Tokyo University of Fisheries. The layout of
the experimental system for measuring the shape of
the simplified longline model is shown in Fig.4. The
model was placed in a uniform current and the ends of
the mainline were fixed to the supporting bars at a
shortening rate of 0. 95 for the mainline in the
experiment. Because of the size limit of the water
tank, the model had only three branch-lines
(generally there are 5 to 16 branch-lines between the
neighboring buoys in commercial tuna longline
fishery* "' ). Model made of

polypropylene, and the length of mainline and branch-

ropes  were

line were 2.4m and 0.6m, respectively. In order to
avoid over-blowing downstream and to facilitate the
observation of the working shape of the ropes, a line-
shaped lead was wrapped inside the ropes, and three

spherical sinkers with 27g each in water (Fig.4, large
solid circles) were attached to the free end of the
branch-lines for modeling the hooks, respectively.
The ropes are 6mm in diameter and 75 g*m™' in

water .

current
4 —_— flume tank

e
VAN

%&i

A t pc camera set just
/D convertor beside the tank

camera set
under the tank

Fig.4 The layout of the experimental system for
measuring the shapes of the simplified long-line model
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As shown in Fig. 4. the velocity was measured
by a propeller flow meter set in upstream. The
equilibrium shape of the model longline was measured
by using images taken simultaneously by two digital
video cameras, set under and just beside the water
tank respectively. The images were analyzed by
“DIPP- MOTION 2D "
software, producing a set of 3-D coordinates for all

digital image analysis
measured nodes. The errors due to the inadequacies in
the optical system, such as the distortion by water
refraction and the parallax by the difference in
distance from objects to the center of camera lens,
have been corrected .

Initially assumed configuration
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In addition, the horizontal distance of mainline
between the two neighboring buoys almost remains
constant during operation according to the experience
from fishermen. So, it can be supposed that the two
ends of the model longline are fixed in our experiment
their

and numerical computation, that is,

displacements in X, Y and Z directions are zero.
3 Results

3.1 Status of the longline model when parallel to
the current

The calculated shapes of the model longline and
its measured values, when set parallel to a uniform
current, are shown in Fig. 5. In this figure (except

In this numerical example, the mainline was
equally divided into 8 elements of 0.3 m and divided
each branch-line into 3 elements of 0.2 m. As a
result, there are 17 elements and 18 nodes in the
whole system (Fig.5, top-left). The dotted line is an
initially assumed configuration of the simplified model
for the nonlinear calculation, that is, the mainline
was assumed to be an isosceles triangle and the
branch-lines vertically direct down. In the top-left
figure, the small solid circles express the virtual nodes
of the elements, and the large solid circles indicate
the spherical sinkers.

V=30cmes~! (iterations=29)

10
60

0 ST
T U T
-

80
100

0 50 100 150 200

V=70cm+s~! (iterations=59)

0

20 P —
o N
60 1S
80
100

40

0 50 100 150 200

Effect of current speed on the shape of the long-line model when placed parallel to the current

the top-left), the solid lines express the calculated
shapes when V' =0.3, 0.5and 0.7 m*s™', the small
and large solid circles express the measured values of
the virtual nodes of the elements and the spherical
sinkers respectively. It is apparent that the theoretical
and experimental values are in close agreement,
although the calculated positions of the middle and the
downstream-most branch-line are somewhat inaccurate
under the high velocity of current. The model longline
is skewed downstream, and it is different from the
common thought that the mainline conforms to a
standard catenary as a result of, the hydrodynamic
forces. The great variations of the shape of the model
longline with the increasing of flow speed from V' =
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0.3 10 0.7 m*s™" were well simulated. With the
increase of the hydrodynamic forces acting on the
ropes, the branch-lines were remarkably blown and
the setting depth of the hooks evidently reduced by
nearly 0.2m in the case of ¥V =0.7 m-s~'(Fig.5,
comparing top-right with low-right) .

The values near each element (Fig.5, left-low;
unit: kg) indicate the tensions of the corresponding
elements when V = 0.5 m-s™', as an illustrative
example. The tension simulation result suggests that
the tensile force of the element decrease gradually in
the downstream direction and that the highest tension
is on the upstream-most fixed end of mainline. The
tension is much higher in the mainline than in the
branch-lines.

3.2 Status of the long line model inclined to a
current

Because longline operation is not always parallel
to the current in tuna fishery, the validity of the
proposed method, when aligned at an angle (a)
relative to the current, has to be examined also. In
contrast to configuration parallel to the current, it is
clear that the model has a 3-D configuration in this
situation (Fig.6).

Fig.6 demonstrates the effect of current speed on
the shape of the model longline when o = 10°. Similar
to the case parallel to current, the shape of the
mainline formed a rough catenary. The shape of the

Initially assumed configuration

branch-lines greatly changed with increasing tlow
speed from V=0.3, 0.5t0 0.7 m+s~!, that is, the
setting depth of the hooks was remarkably getting
shallower as a result of increasing current.

For the sake of convenience, the computations
were started from a simple assumed shape in this
case, 1.e. mainline is an isosceles triangle and the
branch-lines are upright, and the panel formed by the
mainline and branch-lines is at an angle of 10° relative
to the current (Fig.6, top-left) .

Further, the comparisons of the experimental
data with the calculated results for V=0.5 m*s ™! and
a =10° are shown in Fig.7. The calculated results for
the geometry (solid lines) are very close to the
ekperimental values (solid circles) . In the top view of
the system (Fig. 7, low), it is demonstrated very
well by the numerical model that the mainline curves
slightly downstream and that the branch-lines are
reflected straight and parallel to the current owing to
the hydrodynamic forces.

In the side view of the system (Fig.7, top), the
values (unit: kg) nearby elements express the tension
of the corresponding element. The numerical results
for rope tension showed that the rope tensions
diminished downstream. The decrease trend of tension
was clearly observed by the tensity of rope in the
model testing.

V=30cmes™! (iterations=29)

Fig.6 Effect of current speed on the shape of the long-line model when placed at an angle of 10° relative to the current
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The values m the figure denote the element tension(kg)

4 Discussions

(1) Tn the above mixed formulation, since the
strain-displacement relationship can be maintained
completely without any omission, the solution with
desired accuracy can be ensured in the Newton-
Raphson iterative procedure adopted without taking the
recurrence of the load increments for any intensity of
the applied load, in the sense of the problems of small
strain and large displacement.

(2) In order to accurately model the shape-
dependent hydrodynamic characteristics, the loading
and shape iterative procedure has been employed.

(3) Tlterative solution for nonlinear problems
commonly requires initial values at the beginning of
calculation, and the imitial values provided will affect
computing time. Theoretically, the closer to the
correct solution the initial values are, the shorter the
computation time will be. In this paper, for the sake
of convenience, the computations were started from a
simple assumed shape, i.e. mainline is an isosceles
triangle and the branch-lines are upright, the values in
brackets in Fig. > and Fig. 6 express the number of
iteration.

(4) In commercial turta fishery, the fishing
operation status of each basic unit of the longline gear
(including mainline, branch-lines and hooks between
the two neighboring buoys) can be considered to be

i 20

same and the distance of the mainline can be generally
regarded  almost  unchangeable during  fishing
operation. So, as mentioned above. we could only
use a basic unit to approach the whole longline
assuming that its two ends are fixed.

(5) Although the tension simuifation results did
not be compared in this paper because it is very
difficult to be measured, the tension distribution
pattern from Fig. 5 and Fig. 7 agrees with the
experimental observation (such as the tensity of each
element in model testing) and qualitative analysis
from common knowledge. So, it is shown that the
simulation results of tension distribution are reliable
and that the calculation results are of very important
significance for correctly selecting fishing gear
material to ensure the gear strength.

Because the factors affecting longline behavior
during operation are very complex, such as fishing
boat speed during operation and fishing ground
conditions ( wave, current and wind), etc.. it has
been considered very difficult to predict numerically
the operation status of a longline for a long time *~ !
In this paper, we validly divided the supple rope
system into so-called finite rope elements and
correspondingly regarded the whole system as an
assembly of such discrete elements. The results
showed that the proposed method has excellent global
and good The 3-D

configuration and tension distribution of a longline are

convergence accuracy .

very difficult to be measured since it works

underwater. So, we hope the proposed method can
present a useful altermative numerical tool for the
improvement and design ot longline.
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