人工智能鱼群监测技术揭示青海湖裸鲤洄游与河流环境的关系
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S 931;TP 183

基金项目:

国家自然科学基金(52079148);青海省科技计划项目(2024-SF-152);中国水利水电科学研究院基本科研业务费(SS0145B022021)


Artificial intelligence fish-monitoring links Gymnocypris przewalskii migration to river environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 青海湖裸鲤是青海湖流域的核心物种和溯河产卵鱼类,每年洄游到河流中的繁殖群体规模和效率是裸鲤保护的核心问题,由于缺乏有效的监测设备,对其知之甚少。方法 本研究提出“鱼群光学图像+人工智能”的技术路径,开发了人工智能鱼群信息检测算法(AI-Fish),研发了针对浅水河流的新型鱼群智能监测设备,建立了裸鲤标准生长模型来估算年龄,应用于泉吉河下游36 m河宽全断面监测。基于2021—2024年的监测数据,本研究初步揭示了青海湖裸鲤洄游过程及其与环境的关系。结果 每年青海湖裸鲤“洄游季”可以分为初期 (上溯为主)、中期 (繁殖为主)和末期 (降河为主) 3个阶段;裸鲤洄游事件的发生和发展受河道流量和水温触发及控制。泉吉河小于临界流量 (2.5 m3/s)时流量增加促进裸鲤上溯洄游,达到最大流量 (10 m3/s)时洄游停止。上溯洄游日过程与水温变化节律一致,数量随着水温同步增加,高峰期出现在下午 (15:00—16:00)和夜晚 (20:00—21:00),最大日上溯数量为36.2万尾。洄游群体并不都是繁殖群体,存在“伴游”现象。洄游地理上限由自然屏障和海拔高度决定。超过70万尾裸鲤的大数据分析发现,裸鲤洄游种群的年龄结构为正态分布,以3~7龄为主,可以分解为正态分布的雌雄年龄结构,该结构受雌雄性比影响。结论 项目组研发的设备能够用于青海湖裸鲤洄游群体的全天候实时监测,识别准确率超过90%,可以获得裸鲤的数量、洄游方向、全长、年龄结构等生物学参数。建议在青海湖主要河流建设监测网络,可以及时准确地获取青海湖裸鲤洄游群体的完整“大数据”信息,为未来青海湖生态保护提供强大科技支撑。

    Abstract:

    The naked carp (Gymnocypris przewalskii) is a keystone and anadromous species in Qinghai Lake, but its annual reproductive migration to rivers is not well understood due to insufficient monitoring tools. Here, we introduced a ″fish optical video + artificial intelligence″ technology, developed an artificial intelligence fish detection (AI-Fish) algorithm and intelligent monitoring equipment for shallow rivers. We also established a standard growth model for G. przewalskii to estimate the age of fish and applied it to a 30-metre-wide section of the lower Quanji River. From 2021 to 2024, monitoring data revealed the migration dynamics and environmental interactions of G. przewalskii in Qinghai Lake. The annual migration comprises three phases: early (upstream migration), middle (breeding), and late (downstream migration). River flow and water temperature primarily influence migration timing, with a critical flow rate of 2.5 m3/s promoting upstream migration in the Quanji River, peaking at 10 m3/s. Upstream migration aligns with daily water temperature rhythms, peaking in the afternoon (15:00-16:00) and evening (20:00-21:00), with a daily maximum of 362,000 individuals. Notably, not all migrants spawn, exhibiting 'non-reproductive accompanying migration.' Migration is geographically limited by natural barriers and altitude. Big data analysis of over 700 000 individuals showed a normally distributed age structure, dominated by 3-7 years old, with distinct male and female distributions influenced by sex ratio. Our results indicate that the developed equipment effectively can be used for all-weather and real-time monitoring of the migratory population of G. przewalskii in Qinghai Lake, with an identification accuracy of more than 90%, and can obtain biological parameters such as the number of fish, direction of migration, full length, and age structure. By establishing a monitoring network in the main rivers of Qinghai Lake, we can quickly and accurately collect comprehensive 'big data' on the migrating population each year, providing robust scientific support for their future conservation.

    参考文献
    相似文献
    引证文献
引用本文

黄真理,温浩,祁洪芳,叶冠中,李海英,王鲁海,付生云,钟南昌,刘君.人工智能鱼群监测技术揭示青海湖裸鲤洄游与河流环境的关系[J].水产学报,2025,49(7):079309

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-06
  • 最后修改日期:2024-12-21
  • 录用日期:
  • 在线发布日期: 2025-07-03
  • 出版日期:
文章二维码