DOI: 10.11964/jfc.20230714072

不同月龄膨腹海马表型形态性状与体重之间 的关系

肖辉裕^{1,2}, 马爱军^{2,3*}, 孙志宾^{2,3*}, 王新安^{2,3}, 孙伟恒², 慈小静⁴, 俞兰良⁴

1. 中国海洋大学水产学院,山东 青岛 266003; 2. 中国水产科学研究院黄海水产 研究所,海水养殖生物育种与可持续产出全国重点实验室,青岛市海水鱼类种子 工程与生物技术重点实验室,中国-东盟海水养殖技术"一带一路"联合实验室(青 岛),山东 青岛 266071; 3. 青岛海洋科技中心,海洋生物学与生物技术功能实 验室,山东 青岛 266237; 4. 威海银泽生物科技股份有限公司,山东威海 264404

摘要:

【目的】为了探究膨腹海马生长特性,分析各月龄膨腹海马表型形态性状对体重的影响大小,寻找影响体重的主要表型形态性状。

【方法】实验每月定期从 1~5 月龄膨腹海马养殖池中随机各取 60 尾, 连续跟踪 4 个月,测量其体重及 7 个表型性状,综合采用相关分析、 多元回归分析、通径分析方法分析性状间相互关系,并利用逐步回归 分析方法建立各月龄膨腹海马体重模型。

【结果】1~4月龄膨腹海马所测各表型性状与体重之间的相关系数均 达到极显著水平,而5月龄膨腹海马除吻长与体重相关性不显著之外, 其余表型性状均与体重极显著相关;1、2月龄膨腹海马表型性状对体 重直接影响最大的为头鳃盖后缘到尾尖长(r_1 =0.615、 r_2 =0.334),对 体重的直接决定程度(r_1^2 =37.8%、 r_2^2 =11.2%)最高;3、4、5月龄膨 腹海马表型性状对体重直接影响最大的为背鳍处宽度(r_3 =0.792、 r_4 = 0.619、 r_5 =0.397),对体重的直接决定程度(r_3^2 =62.7%、 r_4^2 =38.3%、 r_5^2 =15.8%)最高;各月龄膨腹海马所选表型性状对体重的回归系数 R_1^2 = 0.932、 R_2^2 =0.915、 R_3^2 =0.958、 R_4^2 =0.932、 R_5^2 =0.877,表明所选性 状是影响体重的主要性状。以背鳍处宽度(DFW)、头鳃盖后缘到尾尖 长(CPCT)、背鳍处厚度(DFT)、背鳍后缘到尾尖长(DFPCT)、头颈处 厚度(HNT)、头长(HL)、吻长(SL)为自变量建立了估计1~5月龄膨腹 海马体重的回归方程。

【结论】在膨腹海马体重选育中,应充分考虑其生长特性,不同月龄 期选育的性状依据不同,本研究可为膨腹海马选育工作提供理论依据, 提高选育精度和效率。

关键词: 膨腹海马; 形态性状; 体重; 相关分析; 通径分析

膨腹海马 (*Hippocampus abdominalis*) 又称大腹海马,为硬骨鱼纲 (Osteichthyes) 海龙目 (Syngnathiformes) 海龙科 (Syngnathidae) 海马属

第一作者:肖辉裕,从事鱼类遗传育种研究,E-mail: 2035864019@qq.com

通信作者:马爱军,中国水产科学研 究院黄海水产研究所研究员、博士生 导师,从事鱼类遗传育种、繁育养殖 技术与基础生物学等研究,取得了多项 创新性成果,E-mail:maaj@ysfri.ac.cn

孙志宾,从事鱼类遗传育种研究,E-mail: sunzb@ysfri.ac.cn

资助项目: 国家重点研发计划 (2022YFE0203900): 国家现代农业产 业技术体系(CARS-47-01): 威海市海 洋产业重点技术"揭榜挂帅"项目(2022-03): 中国水产科学研究院基本科研业 务费专项(2023TD26): 广东省科技计 划项目(20221207)

收稿日期: 2023-07-07 修回日期: 2024-01-13

文章编号: 1000-0615(2025)02-029610-15 中图分类号: S 965.3 文献标志码: A

作者声明本文无利益冲突

©《水产学报》编辑部(CC BY-NC-ND 4.0) Copyright © Editorial Office of Journal of Fisheries of China (CC BY-NC-ND 4.0)

https://www.china-fishery.cn

(*Hippocampus*)。膨腹海马在目前已知的海马种 类中体型最大,主要分布在澳大利亚及新西兰 海域,栖息于礁石海草中,以小型浮游生物为 食,因过度捕捞、海洋环境恶化等原因而导致 种群数量急剧减少,已被列入世界濒危物种红 色名录^[1-2]。2016年膨腹海马引进我国,因其具 有更快的生长速率、更高的存活率、更强的抗 逆性、更易于繁殖等优势,深受养殖户的青睐, 先后在山东、辽宁、河北、广东等地推广养殖 成功,产业化发展迅猛,成为了海马养殖新宠。 目前,膨腹海马的研究多集中在生殖生理、药 理药效、养殖生态等方面^[3-8]。

在单一种类高密度养殖条件下,中华绒螯 蟹 (Eriocheir sinensis)、海湾扇贝 (Argopecten irradians)、大黄鱼 (Larimichthys crocea)、罗氏沼虾 (Macrobrachium rosenbergii)等养殖品种都曾出 现过不同程度的种质退化现象[9-12],主要原因是 原种数量较少,群体种类又比较单一,人工繁 殖过程中也未专门对亲本进行优选处理,经过 累代养殖以及近亲交配, 使得劣质基因纯合化, 出现了生长缓慢、抗逆性降低、存活率降低等 一系列近交衰退问题,遏制了产业发展空间^[13]。 因此,为了保证膨腹海马养殖产业能够健康可 持续发展,要尽快开展膨腹海马溃传育种研究 工作,在高密度单一养殖群体中及时开展繁育 亲本选优处理,降低近亲交配。在良种选育中, 体重是生产性能的直接反映,是最直接的目标 性状,然而体重无法直观体现,在实际生产操 作中,容易受到体表水分、肠道食物残存率等 多因素的影响,导致测量数值与实际存在较大 的偏差。利用多元回归分析方法剖析表型形态 性状与体重的相互关系, 推算表型形态性状对 体重的直接影响大小,通过表型形态性状的选 择达到选种目标,具有十分重要的意义[14]。

目前,在鱼类、爬行类、甲壳类、贝类等的形态性状、生长参数及良种选育等方面的研究中,相关分析、通径分析、多元分析是常见的研究方法。王新安等^[15]对红鳍东方鲀(*Taki-fugu rubripes*)17个形态性状对体重的影响效果研究,谷伟等^[16]对雌雄虹鳟(*Oncorhynchus mykiss*)8个形态性状对体重的影响效果研究,马晓等^[17]对100和300日龄的中华鳖(*Pelodiscus sinensis*)4个形态性状对体重的影响研究,黄有辉等^[18]对来自5个不同地理群体的日本沼虾(*M. nip-*

ponense) 18 个形态性状对体重的影响研究, 陈 红林等[19] 对不同生长时期红螯光壳螯虾 (Cherax quadricarinatus) 表型性状差异分析,梁健等^[20] 对不同地理群体的菲律宾蛤仔 (Ruditapes philippinarum) 表型性状对软体部重的作用效果分析, 何俊等^[21]对经过多代选育的泥蚶 (Tegillarca granosa)的表型性状对软体部重以及全重的影 响效果分析,以上这些研究均综合采用了相关 分析、多元回归分析、通径分析,全面考察了 各自变量间的相互关系,同时也区分了各自变 量对因变量的直接影响和间接影响的大小,确 定了影响目标性状的主要形态性状,但有关膨 腹海马的相关研究未见报道。本研究对不同月 龄膨腹海马表型形态性状与体重之间的关系进 行了相关分析、通径分析,区分了影响膨腹海 马体重的主要形态性状以及直接作用和间接作 用的大小,同时利用多元回归分析,建立了不 同月龄膨腹海马形态性状与体重之间的多元线 性最优回归方程,为膨腹海马良种选育提供了 测定指标和理论依据,提高了选育精度和效率。

1 材料与方法

1.1 实验材料

实验用膨腹海马来自威海银泽生物科技有 限公司, 膨腹海马源自澳大利亚引进种自交繁 殖后代。2022年7—10月,每月定期进行1次 表型性状测量,每次分别从1~5月龄的膨腹海 马养殖池中随机挑取 60 尾作为测量样本,每次 测量样本总数为300尾。测量膨腹海马8个表 型性状,其中体重 (BW)用电子天平 (松竫 ZOGGI ZG-TP203, 精度 0.001g) 测量、背鳍处 厚度 (DFT) 和头颈处厚度 (HNT) 用游标卡尺 (日本亲和 SHINWA-19515, 精度 0.01 cm) 测量。 背鳍处宽度 (DFW)、头鳃盖后缘到尾尖长 (CPCT)、背鳍后缘到尾尖长 (DFPCT)、头长 (HL)、吻长(SL)等5个性状,则通过将膨腹海 马身体捋直,水平摆放在测量板之上,调整合 适后,用照相机(尼康D7200)拍照,再经过 VistarImage 软件进行测量,精确到 0.01 cm,共 获得9600个测量数据(图1)。

实验过程中操作人员严格遵守动物实验伦 理规范,并按照中国水产科学研究院黄海水产 研究所实验动物与福利伦理委员会制定的规章

图 1 膨腹海马形态性状测量标准示意图

A—B.吻长 (SL), C—D.头长 (HL), E—F.头颈处厚度 (HNT) 测量 位点,G—H.背鳍处宽度 (DFW)、背鳍处厚度 (DFT) 测量位点, D—J.头鳃盖后缘到尾尖长 (CPCT), I—J.背鳍后缘到尾尖长 (DFPCT)。

Fig. 1 Schematic diagram of measuring standard for morphological traits of *H. abdominalis*

A–B. snout length (SL), C–D. head length (HL), E–F. head and neck thickness (HNT) measurement site, G–H. dorsal fin width (DFW) and dorsal fin thickness (DFT) measurement site, D–J. cephalic gill cover long from posterior margin to caudal tip (CPCT), I–J. dorsal fin long from posterior margin to caudal tip (DFPCT).

制度执行。

1.2 分析方法

首先运用 IBM SPSS Statistics 20.0 软件对 1~5月龄膨腹海马的各性状数据进行描述性统 计,计算出各性状的平均值 (mean)、标准差 (SD)以及变异系数(CV),其次分别对1~5月龄 膨腹海马进行各性状间相关分析、各形态性状 对体重的通径分析, 剖析各性状之间的相关性 大小以及各形态性状对体重的直接作用和间接 作用,通过相关系数和通径系数计算出单个性 状对体重的决定系数dxiv和两个性状对体重的 共同决定系数dx;x;v,然后根据通径分析结果, 选择通径系数达到显著水平的形态性状来计算 复相关指数,确定影响体重的主要形态性状, 最后根据表型相关分析结果,使用逐步回归分 析方法中的逐步引入-剔除法,建立以形态性状 为自变量、体重为依变量的最优多元回归方程。 对于数据结果,当 P<0.05 时表示差异显著, P<0.01 时表示差异极显著。

通径系数 $P_{x_i \cdot y}$ 简写为 P_i ,间接通径系数 $P_{x_i x_j}$ 简写为 P_{ij} ,总决定系数 $r_{x_i \cdot y}$ 简写为 r_i ,单个 性状对体重的决定系数 $d_{x_i \cdot y}$ 简写为 d_i ,两两性状 对体重的共同决定系数 $d_{x_i x_j \cdot y}$ 简写为 d_{ij} ,各计算 公式:

相关系数:
$$r_{xy} = \frac{\sum_{i=1}^{n} [(x-\bar{x}) \times (y-\bar{y})]}{\sum_{i=1}^{n} \left[(x-\bar{x})^2 \times \sum_{i=1}^{n} (y-\bar{y}) \right]^2}$$
 (1)

通径系数:
$$P_i = b_{y,x_i} \times \frac{\sigma_{x_i}}{\sigma_y}$$
 (2)

间接通径系数:
$$P_{ij} = r_{ij}P_j(i \neq j)$$
 (3)

总决定系数:
$$r_{x_i,y} = P_i + \sum r_{ij}P_i$$
 (4)

单个性状决定系数:
$$d_i = P_i^2$$
 (5)

两两性状决定系数:
$$d_{ij} = 2r_{ij} \times P_i \times P_j$$
 (6)

夏相关指数:
$$R^2 = \sum r_{x_i \cdot y} P_i$$
 (7)

2 结果

2.1 膨腹海马形态性状对体重的影响

所测量的1200尾膨腹海马性状数据资料 经描述性统计后,结果如表1所示。1~5月龄 各性状中,BW、DFW、DFT、HNT变异系数 均大于其他性状,其中BW的变异均最大,分 别为0.587、0.441、0.705、0.437、0.295。1、3 月龄各表型形态性状变异系数整体上大于2、4、 5月龄;2、4月龄各表型形态性状变异系数大 小相近,而5月龄除了HL和SL,其他各表型 形态性状变异系数均小于其他月龄(表1,图2)。 从图3可以看出,膨腹海马在1~2月龄、2~3 月龄,生长速率大于其他阶段,并且各阶段各 表型形态性状的生长速率也不同。

对膨腹海马各性状进行表型相关分析,获 得了各性状间的表型相关系数,结果如表 2 所 示,1~4月龄各性状间的表型相关均达到极显 著水平 (P<0.01),5月龄则除了 SL 外,其他各 性状间的表型相关均达到极显著水平 (P<0.01), 表明所选性状进行相关分析具有实际意义。由 图 4 可以看出,在1~2月龄中,CPCT 与 BW 的相关系数最大,而在3~5月龄中,则是 DFW 与 BW 的相关系数最大;在1、4~5月龄中, HL 与 BW 的相关系数最小,而在2~3月龄中, 则是 SL 与 BW 的相关系数最小。在1~2月龄 中,各形态性状与 BW 的相关系数差异不大, 而在 3~5月龄中,各形态性状与 BW 的相关系

根据通径分析的基本原理,同时利用性状间相关分析所得的相关系数,建立1~5月龄膨腹海马各性状对体重的通径系数多元方程组。 求解方程组,得到各性状对体重的通径系数。

		P							
月龄 month of age	参数 parameter	BW/g	DFW/cm	CPCT/cm	DFT/cm	DFPCT/cm	HNT/cm	HL/cm	SL/cm
1	平均值 mean	0.196	0.354	4.647	0.198	2.874	0.159	0.506	0.532
	标准差 SD	0.115	0.086	0.937	0.606	0.615	0.360	0.093	0.079
	变异系数/% CV	0.587	0.243	0.202	0.305	0.214	0.226	0.184	0.148
2	平均值 mean	0.435	0.522	6.083	0.289	3.822	0.211	0.647	0.653
	标准差 SD	0.192	0.103	0.847	0.586	0.569	0.372	0.066	0.065
	变异系数/% CV	0.441	0.197	0.139	0.204	0.149	0.175	0.102	0.100
3	平均值 mean	1.052	0.780	7.472	0.394	4.716	0.285	0.774	0.732
	标准差 SD	0.742	0.301	1.630	1.028	1.017	0.802	0.135	0.113
	变异系数/% CV	0.705	0.386	0.218	0.261	0.216	0.281	0.174	0.154
4	平均值 mean	1.603	0.934	8.940	0.475	5.707	0.334	0.880	0.820
	标准差 SD	0.701	0.227	1.057	1.096	0.752	0.603	0.086	0.094
	变异系数/% CV	0.437	0.243	0.118	0.232	0.132	0.180	0.098	0.115
5	平均值 mean	2.292	1.167	10.050	0.531	6.423	0.360	0.958	0.863
	标准差 SD	0.677	0.194	0.926	0.936	0.694	0.479	0.117	0.108
	变异系数/% CV	0.295	0.166	0.092	0.177	0.108	0.133	0.122	0.125

表1 不同月龄膨腹海马各表型性状描述统计

 Tab. 1
 Statistical description of phenotypic morphological traits of *H. abdominalis* at different months

注: BW.体重, DFW.背鳍处宽度, CPCT.头鳃盖后缘尾尖长, DFT.背鳍处厚度, DFPCT.背鳍后缘到尾尖长, HNT.头颈处厚度, HL.头长, SL.吻长, 下同。

Notes: BW. body weight, DFW. dorsal fin width, CPCT. cephalic gill cover long from posterior margin to caudal tip, DFT. dorsal fin thickness, DFPCT. dorsal fin long from posterior margin to caudal tip, HNT. head and neck thickness, HL. head length, SL. snout length, the same below.

通过显著性检验,剔除了不显著的性状,只保 留达到显著水平的性状,计算达到显著水平的 性状通径系数。不同月龄膨腹海马保留的显著 性状不同,1月龄保留了 CPCT、DFT、DFW 这3个显著性状;2月龄保留了 CPCT、DFW、 DFT、DFPCT 这 4 个显著性状; 3 月龄保留了 DFW、DFPCT、SL、HL、DFT、HNT 这 6 个 显著性状; 4 月龄保留了 DFW、CPCT、DFT、 DFPCT、HL 这 5 个显著性状; 5 月龄保留了 DFW、DFT、CPCT、HNT 这 4 个显著性状。

Fig. 3 Relative growth rate of phenotypic morphological traits in H. abdominalis

通径系数反映了自变量对因变量的直接影响, 间接通径系数反映了自变量对因变量的间接影 响。根据通径系数和间接通径系数可以发现, 1月龄所保留的3个性状中, CPCT对BW 的直 接作用最大 (0.615), DFW 对 BW 的直接作用最 小(0.147), DFW 通过 CPCT 对 BW 的间接作用 最大 (0.519), CPCT 通过 DFW 对 BW 的间接作 用最小(0.124)。2月龄所保留的4个性状中, CPCT 对 BW 的直接作用最大 (0.334), DFT 对 BW 直接作用最小 (0.145), DFPCT 通过 CPCT 对 BW 间接作用最大 (0.327), DFW 通过 DFT 对 BW 的间接作用最小 (0.113)。3 月龄所 保留的6个性状中, DFW对BW 的直接作用最 大(0.792), SL 对 BW 的直接作用最小(-0.055), 且为反向直接影响, DFT 通过 DFW 对 BW 的 间接作用最大 (0.720), DFT 通过 SL 对 BW 的 间接作用最小(-0.028),且为反向间接影响。4 月龄所保留的5个性状中, DFW 对 BW 的直接 作用最大 (0.619), HL 对 BW 的直接作用最小 (-0.054), 且为反向直接影响, CPCT通过 DFW 对 BW 的间接作用最大 (0.527), DFW 通 过 HL 对 BW 间接作用最小 (-0.021), 且为反向 间接影响。5月龄所保留的4个性状中, DFW 对 BW 的直接作用最大 (0.397), HNT 的直接作 用最小 (0.094), DFT 通过 DFW 对 BW 间接作 用最大 (0.285), DFW 通过 HNT 对 BW 的间接 作用最小(0.047)(表 3)。通过各性状对体重的 通径系数计算得到 1~5 月龄膨腹海马相关指数,

分别为 R_1^2 =0.932、 R_2^2 =0.915、 R_3^2 =0.958、 R_4^2 = 0.932、 R_5^2 = 0.877,表明拟合的线性统计模型及相应参数的估计准确可靠。

2.2 形态性状对体重的决定程度

由单个性状对体重的决定系数公式以及两 两性状对体重的共同决定系数公式, 计算出各 性状及性状间协同对各月龄膨腹海马体重的决 定系数。如表4所示,以对角线为标准,对角 线上的数据是单个性状对体重的决定系数,对 角线以上的数据是两两性状共同对体重的决定 系数。总决定系数等于单独的决定系数和两两 共同决定系数之和,各月龄的形态性状对体重 总的决定系数与相关指数 R² 的数值相等,表明 本研究所测定的形态性状是影响体重的主要性 状,而其他未测定的性状对于体重的影响则相 对较小。由表4可以看出,不同月龄膨腹海马, 各性状对体重的相对决定程度有所不同。在1 月龄中, CPCT对 BW 决定程度最大 (37.8%)、 DFW 对 BW 决定程度最小 (2.2%);在共同决定 系数中, CPCT 和 DFT 对 BW 的共同决定程度 最大 (25.5%), DFT 和 DFW 对 BW 的共同决定 程度最小 (6.2%)。在 2 月龄中, CPCT 对 BW 决定程度最大(11.2%), DFT 对 BW 决定程度最 小(2.1%); 在共同决定系数中, CPCT和DFW 对 BW 的共同决定程度最大 (17.3%), DFT 和 DFPCT 对 BW 的共同决定程度最小 (5.1%)。在 3月龄中, DFW 对 BW 决定程度最大 (62.7%),

Tab. 2 Phenotypic correlation among the traits of <i>H. abdominalis</i> at different months of age									
月龄 month of age	性状 trait	BW	DFW	СРСТ	DFT	DFPCT	HNT	HL	SL
1	BW	1	0.878**	0.946**	0.885**	0.935**	0.806**	0.751**	0.823**
	DFW		1	0.844**	0.851**	0.868**	0.796**	0.798**	0.835**
	CPCT			1	0.831**	0.982**	0.764**	0.749**	0.837**
	DFT				1	0.836**	0.877**	0.699**	0.758**
	DFPCT					1	0.768**	0.785**	0.850^{**}
	HNT						1	0.625**	0.708^{**}
	HL							1	0.792**
	SL								1
2	BW	1	0.876**	0.926**	0.840^{**}	0.915**	0.727**	0.752**	0.651**
	DFW		1	0.803**	0.777**	0.782**	0.661**	0.722**	0.617**
	CPCT			1	0.808^{**}	0.980**	0.696**	0.723**	0.686**
	DFT				1	0.794**	0.780^{**}	0.672**	0.562**
	DFPCT					1	0.684**	0.711**	0.661**
	HNT						1	0.561**	0.433**
	HL							1	0.613**
	SL								1
3	BW	1	0.973**	0.820**	0.878^{**}	0.907**	0.885**	0.887**	0.549**
	DFW		1	0.814**	0.909**	0.891**	0.892**	0.872**	0.546**
	CPCT			1	0.753**	0.899**	0.754**	0.848**	0.622**
	DFT				1	0.828^{**}	0.875**	0.828^{**}	0.517**
	DFPCT					1	0.838**	0.926**	0.694**
	HNT						1	0.840**	0.557**
	HL							1	0.666**
	SL								1
4	BW	1	0.953**	0.877**	0.831**	0.827**	0.691**	0.435**	0.438**
	DFW		1	0.852**	0.822**	0.796**	0.687**	0.398**	0.409**
	CPCT			1	0.738**	0.880**	0.706**	0.625**	0.530**
	DFT				1	0.708^{**}	0.727**	0.430**	0.274**
	DFPCT					1	0.683**	0.614**	0.446**
	HNT						1	0.507**	0.271**
	HL							1	0.345**
	SL								1
5	BW	1	0.858**	0.772**	0.822**	0.737**	0.643**	0.325**	0.081
	DFW		1	0.663**	0.719**	0.604**	0.504**	0.236**	0.023
	CPCT			1	0.569**	0.932**	0.551**	0.460**	0.372**
	DFT				1	0.612**	0.615**	0.234**	-0.067
	DFPCT					1	0.634**	0.503**	0.231**
	HNT						1	0.407**	-0.079
	HL							1	0.159*
	SI								1

表 2 各月龄膨腹海马性状间表型相关性

注: **.在0.01 水平(双侧)上极显著相关(P<0.01), *.在 0.05 水平(双侧)上显著相关(P<0.05),下同。

Notes: **. means extremely significant difference (P<0.01), *. means significant difference (P<0.05), the same below.

图 4 膨腹海马表型形态性状与体重的相关性

Fig. 4	Correlation between phenotypic morphological
	traits and body weight in <i>H. abdominalis</i>

SL 对 BW 决定程度最小 (0.3%);在共同决定系数中,DFW 和 DFPCT 对 BW 的共同决定程度最大 (25.1%),SL 和 HNT 对 BW 的共同决定程度最小 (-0.4%)。在4月龄中,DFW 对 BW 决定程度最大 (38.3%),HL 对 BW 决定程度最小 (0.3%);在共同决定系数中,DFW 和 CPCT 对 BW 的共同决定程度最大 (21.6%),DFT 和 HL 对 BW 的共同决定程度最大 (21.6%), DFT 和 HL 对 BW 的共同决定程度最大 (15.8%) HNT 对 BW 决定程度最小 (0.9%);在共同决定系数中,DFW 和 DFT 对 BW 的共同决定程度最大 (15.8%) HNT

表 3	形态性状对体重影响的通径分析
12 3	<i>心心性</i> (八对件里影响的通任力)们

			ĩ		•			. 0		
月龄 month of age	性状 trait	相关系数(r _{iy}) correlation coefficient	直接作用(P _i) direct effect			间 i	可接作用(r _{ij} l ndirect effec	^p j) et		
1				Σ	CPCT	DFT	DFW			
	CPCT	0.946	0.615	0.331		0.207	0.124			
	DFT	0.885	0.249	0.636	0.511		0.125			
	DFW	0.878	0.147	0.731	0.519	0.212				
2				Σ	CPCT	DFW	DFT	DFPCT		
	CPCT	0.926	0.334	0.592		0.259	0.117	0.216		
	DFW	0.876	0.323	0.553	0.268		0.113	0.172		
	DFT	0.84	0.145	0.696	0.27	0.251		0.175		
	DFPCT	0.915	0.220	0.695	0.327	0.253	0.115			
3				Σ	DFW	DFPCT	SL	HL	DFT	HNT
	DFW	0.973	0.792	0.182		0.159	-0.030	0.078	-0.084	0.059
	DFPCT	0.907	0.178	0.733	0.706		-0.038	0.086	-0.076	0.055
	SL	0.549	-0.055	0.604	0.432	0.124		0.059	-0.048	0.037
	HL	0.887	0.089	0.804	0.691	0.171	-0.037		-0.076	0.055
	DFT	0.878	-0.092	0.971	0.720	0.147	-0.028	0.074		0.058
	HNT	0.885	0.066	0.818	0.706	0.149	-0.031	0.075	-0.081	
4				Σ	DFW	CPCT	DFT	DFPCT	HL	
	DFW	0.953	0.619	0.336		0.175	0.102	0.080	-0.021	
	CPCT	0.877	0.205	0.673	0.527		0.092	0.088	-0.034	
	DFT	0.831	0.124	0.708	0.509	0.151		0.071	-0.023	
	DFPCT	0.827	0.100	0.728	0.493	0.180	0.088		-0.033	
	HL	0.435	-0.054	0.488	0.246	0.128	0.053	0.061		
5				Σ	DFW	DFT	CPCT	HNT		
	DFW	0.858	0.397	0.461		0.233	0.181	0.047		
	DFT	0.822	0.324	0.498	0.285		0.155	0.058		
	CPCT	0.772	0.273	0.499	0.263	0.184		0.052		
	HNT	0.643	0.094	0.549	0.200	0.199	0.150			

Fab. 3	The results of	path analysis	of the effects of	phenotype tra	aits on body weight

中国水产学会主办 sponsored by China Society of Fisheries

月龄	性状 troit			决定	E系数 t acofficienta		
1	trait	СРСТ	DET	DEW	t coefficients		
1	CDCT	0.278	0.255	0.152			
	DET	0.578	0.255	0.062			
	DFW		0.002	0.002			
2	DF W	CDCT	DEW	0.022	DEDCT		
2	CDCT	CPCT	DFW	DFT	DFPC1		
	CPCT	0.112	0.173	0.078	0.144		
	DFW		0.104	0.073	0.110		
	DFT			0.021	0.051		
	DFPCT				0.048		
3		DFW	DFPCT	SL	HL	DFT	HNT
	DFW	0.627	0.251	-0.048	0.123	-0.132	0.093
	DFPCT		0.032	-0.014	0.030	-0.027	0.020
	SL			0.003	-0.007	0.005	-0.004
	HL				0.008	-0.014	0.010
	DFT					0.008	0.011
	HNT						0.004
4		DFW	CPCT	DFT	DFPCT	HL	
	DFW	0.383	0.216	0.126	0.099	0.027	
	CPCT		0.042	0.038	0.036	-0.014	
	DFT			0.015	0.018	-0.006	
	DFPCT				0.010	-0.007	
	HL					0.003	
5		DFW	DFT	CPCT	HNT		
	DFW	0.158	0.185	0.144	0.038		
	DFT		0.105	0.101	0.037		
	CPCT			0.075	0.028		
	HNT				0.009		

Tab. 4 Determinant coefficients of morphological traits on body weight

注: 表中对角线上的数据为每个形态性状单独对体重的决定系数,对角线以上数据是两两性状共同对体重的决定系数。

Notes: Datas on the diagonal line in the table are the coefficient of determination for each morphological character alone, and the datas above the diagonal line are the coefficient of determination for the weight of the corresponding two traits.

(18.5%), CPCT 和 HNT 对 BW 的共同决定程度 最小 (2.8%)。从图 5 可以发现,在单一性状对 体重的影响中, DFW 对膨腹海马 1~5 月龄体 重的累积决定程度最大, SL 对膨腹海马 1~5 月龄体重的累积决定程度最小。在两两性状共 同对体重的影响中, CPCT 和 DFW 共同对膨腹 海马 1~5 月龄体重的累积决定程度最大。两两 性状共同对体重的影响并非总是起正向决定作 用,比如在 3 月龄中, DFT 和 DFW 共同对体 重的影响为负决定作用。

2.3 多元回归方程的建立

将所测得的不同月龄膨腹海马各表型形态 性状资料进行多元线性逐步回归分析,根据表 型形态性状对体重作用的显著程度,依次引入 各表型形态性状,最终所得方程中保留了对体 重影响显著的性状,剔除了对体重影响不显著 的性状。回归结果见表 5 和表 6。BW 为 *y_i* (*i*=1, 2, 3, 4, 5), DFW 为 *x*₁、CPCT 为 *x*₂、DFT 为

Fig. 5 Determination coefficient of phenotypic morphological traits of *H. abdominalis*

 x_3 、DFPCT 为 x_4 、HNT 为 x_5 、HL 为 x_6 、SL 为 x_7 , 建立 1~5 月龄膨腹海马体重的最优回归方程:

 $y_1 = -0.321 + 0.198x_1 + 0.076x_2 + 0.474x_3$

 $y_2 = -0.762 + 0.601x_1 + 0.076x_2 + 0.475x_3 +$ $0.074x_4$

 $y_3 = -1.108 + 1.953x_1 - 0.665x_3 + 0.130x_4 +$ $0.609x_5 + 0.490x_6 - 0.362x_7$

 $y_4 = -1.918 + 1.912x_1 + 0.136x_2 +$ $0.791x_3 + 0.093x_4 - 0.441x_6$

 $y_5 = -3.050 + 1.386x_1 + 0.199x_2 + 2.341x_3 +$ $1.325x_5$

通过多元回归分析显著性检验和各个偏回 归系数的显著性检验,结果显示回归关系达到 极显著水平 (P<0.01) (表 5), CPCT、DFT、DFW 对体重的偏回归系数均达到极显著水平 (P< 0.01), DFPCT、HNT、HL、SL 对体重的偏回 归系数均达到显著水平 (P<0.05) (表 6)。经回归 预测,估计值与实际值差异不显著 (P>0.05), 表明所建各月龄膨腹海马体重模型简便可靠, 可运用于生产实践中。

		Tab. 5	Analysis of variance of	f multiple reg	gression equation		
月龄 month of age		指标 index	总平方和 total sum of squares	自由度 df	均方 mean square	F值 F-value	显著性 significance
1	回归	regression	2.966	3	0.989	1070.364	0
	残差	residual error	0.218	236	0.001		
	总计	total	3.184	239			
2	回归	regression	8.098	4	2.025	635.839	0
	残差	residual error	0.748	235	0.003		
	总计	total	8.847	239			
3	回归	regression	126.100	6	21.017	892.840	0
	残差	residual error	5.485	233	0.024		
	总计	total	131.585	239			
4	回归	regression	109.415	5	21.883	639.229	0
	残差	residual error	8.011	234	0.034		
	总计	total	117.426	239			
5	回归	regression	96.095	4	24.024	419.869	0
	残差	residual error	13.446	235	0.057		
	总计	total	109.542	239			

表 5 多元回归方程的方差分析

'ah 5	Analysis	of variance	of multiple	regression	equation
ab. 0	1 x11 ary 515	or variance	or muniple	regression	equation

中国水产学会主办 sponsored by China Society of Fisheries

月龄 month of age	变量 variable	偏回归系数 partial regression coefficient	标准误差 standard error	T−统计量 T−statistic	误差概率 error probability
1	常量 constant	-0.321	0.011	-30.507**	0
	CPCT	0.076	0.004	17.746**	0
	DFT	0.474	0.067	7.033**	0
	DFW	0.198	0.049	4.011**	0
2	常量 constant	-0.762	0.028	-27.405**	0
	CPCT	0.076	0.023	3.325**	0.001
	DFW	0.601	0.064	9.427**	0
	DFT	0.475	0.113	4.189**	0
	DFPCT	0.074	0.032	2.305^{*}	0.022
3	常量 constant	-1.108	0.085	-12.992**	0
	DFW	1.953	0.106	18.513**	0
	DFPCT	0.130	0.031	4.180**	0
	SL	-0.362	0.127	-2.859**	0.005
	HL	0.490	0.210	2.332*	0.021
	DFT	-0.665	0.248	-2.687**	0.008
	HNT	0.609	0.300	2.027^{*}	0.044
4	常量 constant	-1.918	0.136	-14.076**	0
	DFW	1.912	0.131	14.599**	0
	CPCT	0.136	0.030	4.472**	0
	DFT	0.791	0.196	4.036**	0
	DFPCT	0.093	0.035	2.634**	0.009
	HL	-0.441	0.198	-2.232^{*}	0.027
5	常量 constant	-3.050	0.174	-17.521**	0
	DFW	1.386	0.128	10.811**	0
	DFT	2.341	0.262	8.919**	0
	CPCT	0.199	0.024	8.417**	0
	HNT	1.325	0.431	3.071**	0.002

表 6 偏回归系数和回归常数的显著性检验

Tab. 6 Test of the significance of partial regressions and corresponding intercepts

3 讨论

3.1 表型形态性状描述性统计分析

对比不同月龄膨腹海马的表型统计结果和 变异系数柱形图,可以发现,在不同月龄中, 体重变异系数均最大,这与耿绪云等^[2]在不同 年龄组鲹(*Liza haematocheila*)研究中、杨贵强^[23] 在不同月龄哲罗鲑(*Hucho taimen*)研究中,发 现体重性状的变异系数高于其他形态性状的结 果一致。不同月龄膨腹海马表型形态性状变异 情况基本一致, BW、DFW、DFT、HNT均大 于其他表型性状,说明个体差异主要体现在这 4方面。1、3月龄膨腹海马各表型形态性状变 异系数基本都大于 2、4~5月龄膨腹海马,说明 膨腹海马 1、3月龄个体差异大于其他月龄,比 其他月龄具有更高的选择潜力。对比膨腹海马 表型形态性状相对生长率可以发现,膨腹海马 各形态性状在 1~3月龄相对生长率较大,在 3~5月龄相对生长率较小,表明膨腹海马在 1~3月龄生长速率较快,而到了 3~5月龄生长 速率放缓,并且各阶段各表型形态性状的生长 速率也不同,即异速生长,这与刀鲚 (Coilia nassu)、黄姑鱼 (Nibea albiflora)、长丰鲢 (Hypophthalmichthys molitrix)、北极 茴鱼 (Thymallus arcticus)的生长方式为异速生长,不同阶段形 态性状生长各有差异的研究结果一致^[2427]。异 速生长是大多数鱼类早期发育的基本规律,膨 腹海马不同生长阶段形态性状的异速生长,可 能与其运动、捕食、逃避敌害等能力的增强以 及内部组织器官发育等有关,有利于其适应复 杂的生存环境^[28-29]。

3.2 表型形态相关性分析

相关性分析可以分析变量间的相互关系, 是研究变量间密切程度的统计分析方法。在本 研究中发现, 膨腹海马各表型形态性状与体重 的相关性在不同阶段存在差异。在1~2月龄中, CPCT与BW相关性最强,而在3~5月龄中, DFW 与 BW 相关性最强,这可大致说明膨腹海 马在早期生长发育中先侧重纵向生长,在中后 期侧重于横向生长,这与尼罗罗非鱼 (Oreochromis niloticus)、卵形鲳鲹 (Trachinotus ovatus)、 黄姑鱼在早期阶段侧重纵向生长,体长或全长 与体重相关性最高,在中后期侧重横向生长, 体高与体重相关性最高的研究结果一致^[30-32]。 相关系数是变量间的直接关系和间接关系的综 合体现,因此,相关性分析结果具有一定的参 考意义,但也存在片面性,仍需通过其他方法 进一步全面考察变量间的相互关系。

3.3 多元回归分析与通径分析

在多个自变量与因变量的研究中,可采用 多元回归分析方法实现多个自变量的最优组合, 建立数学模型来预测因变量。多元回归分析可 以消除变量间的干扰,但由于其偏回归系数 未标准化,原因对结果的影响不能直接进行比 较[14]。通径分析能够真实反映各自变量和因变 量的关系,通径系数是变量标准化的偏回归系 数,原因对结果的影响可以直接进行比较,弥 补了相关分析与回归分析的不足,同时通径系 数还能区分原因对结果的直接作用和间接作用, 能够全面客观反映原因对结果的重要程度。综 合考虑统计分析的可靠性和简便性,本研究只 选择表型相关系数达到显著水平的自变量, 剔 除不显著者。本研究结果表明,各月龄膨腹海 马7个形态性状与体重的表型相关均达极显著 水平(P<0.01),其中CPCT、DFW、DFT、DFPCT 与体重之间的相关系数相对较大,确保了进一 步统计分析的意义。

当通径系数分析和决定系数分析在以表型

相关分析的基础上进行时,李松岗[33]认为只有 当复相关指数或总决定系数 Σd (在数值上 $R^2 = \sum d$) 大于或等于 0.85 时,才能表明找到影 响因变量的主要自变量。本研究中, $R_1^2=0.932$ 、 $R_2^2 = 0.915$, $R_3^2 = 0.958$, $R_4^2 = 0.932$, $R_5^2 = 0.877$, 均大于 0.85, 说明各月龄膨腹海马所保留的表 型形态性状是影响体重的主要性状。CPCT、DFW、 DFT 是影响 1~2、4~5 月龄膨腹海马 BW 的共 同主要性状,DFPCT、DFW、DFT 是影响 2~4 月龄膨腹海马体重的共同主要性状,这与"影响 体重的主要因素是使个体具有较大几何空间的 性状"结论一致[14-15,34]。大量研究已表明,诸如 全长、体高、体宽能使个体具有较大几何空间 的性状均对体重有重要贡献。张凯强等[35]研究 发现,在2月龄中国花鲈(Lateolabrax maculatus)中,体高是影响体重的主要形态性状。蓝军南 等^[36]研究发现,7月龄四指马鲅(Eleutheronema tetradactylum) 全长、体高对体重的直接作用 较大。王晓龙等[37]研究发现,全长、体宽、体 高是影响 6月龄斑头六线鱼 (Hexagrammos agrammus)体重的主要形态性状。最优多元回 归方程的建立,进一步明确了膨腹海马 CPCT、 DFPCT、DFW、DFT 等主要性状与 BW 的关系。 通过相关分析、通径分析、多元回归分析的综 合应用,找到了影响各月龄膨腹海马体重的主 要表型性状。在不同时期选择育种中,除了考 虑影响体重的共同主要表型性状,还需考虑各 阶段影响体重的其他主要表型性状。

3.4 膨腹海马数量性状关系对选育的指导意义

由于基因连锁和基因多效性的存在,生物 体性状间会存在不同程度的相关性^[31]。体重是 重要经济性状,是鱼类选育的主要目标性状, 然而在育种实践中,体重容易受各种因素的影 响,对体重直接选择,误差较大;当体重遗传 力较低时,直接选育效果也不佳。雄性膨腹海 马性成熟时,其繁殖生理活动会导致体重发生 一系列变化,当雄性膨腹海马处在发情求偶阶 段时,会出现扩大育雏袋口往里充水和挤压育 雏袋往外排水行为,从而造成体重增加和减轻。 膨腹海马是雄性妊娠动物,胚胎在雄性育雏袋 中发育,当雄性膨腹海马处在怀孕和非怀孕状 态时,其体重也不相同^[3]。因此,在膨腹海马 体重选育中,直接选育并不合适,本研究通过 量化形态性状与体重之间的关系,采取间接选 育的方法,可最大限度降低误差,提高选育精 度和效率,加快育种进程。

参考文献 (References):

- Woods C M C. Preliminary observations on breeding and rearing the seahorse *Hippocampus abdominalis* (Teleostei: Syngnathidae) in captivity[J]. New Zealand Journal of Marine and Freshwater Research, 2000, 34(3): 475-485.
- [2] Woods C M C. Natural diet of the seahorse *Hippocampus* abdominalis[J]. New Zealand Journal of Marine and Freshwater Research, 2002, 36(3): 655-660.
- [3] Whittington C M, Musolf K, Sommer S, et al. Behavioural cues of reproductive status in seahorses *Hippocampus* abdominalis[J]. Journal of Fish Biology, 2013, 83(1): 220-226.
- [4] Martinez-Cardenas L, Purser J G. Effect of direct transfer to different salinities on early juvenile pot - bellied seahorse, *Hippocampus abdominalis*, survival in culture conditions[J]. Journal of the World Aquaculture Society, 2016, 47(2): 201-206.
- [5] Muthuramalingam K, Kim S Y, Kim Y, et al. Bigbelly seahorse (*Hippocampus abdominalis*) - derived peptides enhance skeletal muscle differentiation and endurance performance via activated P38MAPK/AKT signalling pathway: an *in vitro* and *in vivo* analysis[J]. Journal of Functional Foods, 2019, 52: 147-155.
- [6] Je J G, Kim H S, Lee H G, et al. Low molecular weight peptides isolated from seahorse (*Hippocampus abdominalis*) improve vasodilation via inhibition of angiotensin - converting enzyme *in vivo* and *in vitro*[J]. Process Biochemistry, 2020, 95: 30-35.
- [7] 罗辉玉, 祁剑飞, 郑乐云, 等. 膨腹海马温度耐受性及不同温度对其生长的影响 [J]. 渔业研究, 2021, 43(5): 480-486.
 Luo H Y, Qi J F, Zheng L Y, *et al.* The temperature tolerance of *Hippocampus abdominalis* and the effect of different temperatures on its growth[J]. Journal of Fisheries Research, 2021, 43(5): 480-486 (in Chinese).
- [8] Dudley J S, Paul J W, Teh V, et al. Seahorse brood pouch morphology and control of male parturition in *Hippocampus* abdominalis[J]. Placenta, 2022, 127: 88-94.
- [9] 王成辉, 李思发. 中华绒螯蟹种质研究进展 [J]. 中国水产科 学, 2002, 9(1): 82-86.

Wang C H, Li S F. Advances in studies on germplasm in

Chinese mitten crab, *Erocheir sinensis*[J]. Journal of Fishery Sciences of China, 2002, 9(1): 82-86 (in Chinese).

[10] 孙家强,周玮.海湾扇贝引种及展望[J].河北渔业,2011(6): 54-56,63.

> Sun J Q, Zhou W. Introduction and prospect of *Argopecten irradians* Lamarck[J]. Hebei Fisheries, 2011(6): 54-56,63 (in Chinese).

- [11] 贾超峰, 刘海林, 许津, 等. 大黄鱼种质遗传多样性研究进展
 [J]. 海洋通报, 2017, 36(1): 12-18.
 Jia C F, Liu H L, Xu J, et al. A review on the germplasm genetic diversity of large yellow croaker (*Larimichthys crocea*)[J]. Marine Science Bulletin, 2017, 36(1): 12-18 (in
- [12] 罗金萍, 刘培敏, 高权新. 罗氏沼虾良种选育研究进展 [J]. 生物资源, 2023, 45(1): 16-27.
 Luo J P, Liu P M, Gao Q X. Research progress in selective breeding of *Macrobrachium rosenbergii*[J]. Amino Acids and Biotic Resources, 2023, 45(1): 16-27 (in Chinese).

Chinese).

- [13] 竺俊全, 钱伟平. 海水养殖种类种质退化原因及对策 [J]. 宁 波大学学报 (理工版), 2000, 13(2): 87-91.
 Zhu J Q, Qian W P. Cause and countermeasure of genetical characterization decline in marine cultural species[J]. Journal of Ningbo University (NSEE), 2000, 13(2): 87-91 (in Chinese).
- [14] 王新安, 马爱军, 许可, 等. 大菱鲆幼鱼表型形态性状与体重 之间的关系 [J]. 动物学报, 2008, 54(3): 540-545.
 Wang X A, Ma A J, Xu K, *et al.* Relationship between morphometric attributes and body weight of juvenile turbots *Scophthalmus maximus*[J]. Acta Zoologica Sinica, 2008, 54(3): 540-545 (in Chinese).
- [15] 王新安,马爱军,庄志猛,等.红鳍东方鲀(Takifugu rubripes) 形态性状对体重的影响效果[J].海洋与湖沼,2013,44(1): 135-140.

Wang X A, Ma A J, Zhuang Z M, *et al.* Effects of morphometric attributes on body weight of *Takifugu rubripes* (temminck et schlegel)[J]. Oceanologia et Limnologia Sinica, 2013, 44(1): 135-140 (in Chinese).

[16] 谷伟, 户国, 徐革锋, 等. 不同性别虹鳟形态性状对体重的影 响效果分析 [J]. 东北农业大学学报, 2013, 44(3): 108-113.
Gu W, Hu G, Xu G F, *et al.* Mathematical analysis of morphometric attribute effects on body weight for both genders of two-year-old rainbow trout (*Oncorhynchus mykiss*)[J]. Journal of Northeast Agricultural University, 2013, 44(3): 108-113 (in Chinese).

- [17] 马晓, 王晓清, 熊钢, 等. 不同日龄池塘养殖中华鳖形态性状 对体重的影响 [J]. 淡水渔业, 2015(1): 93-97.
 Ma X, Wang X Q, Xiong G, *et al.* Effect of morphological traits on body weight of female and male *Pelodiscus sinensis*[J]. Freshwater Fisheries, 2015(1): 93-97 (in Chinese).
- [18] 黄有辉,范斌,李一鸣,等. 日本沼虾五群体形态性状对体质量的通径分析 [J]. 水产学报, 2016, 40(8): 1173-1185.
 Huang Y H, Fan B, Li Y M, *et al.* Path analysis for the correlations between morphological traits and body weight in five *Macrobrachium nipponense* populations[J]. Journal of Fisheries of China, 2016, 40(8): 1173-1185 (in Chinese).
- [19] 陈红林,秦高婵,楼宝,等.不同生长时期红螯螯虾表型性状差异分析 [J]. 浙江农业学报, 2020, 32(12): 2154-2161.
 Chen H L, Qin G C, Lou B, *et al.* Analysis on phenotypic traits of red claw crayfish (*Cherax quadricarinatus* von Martens) in different growth stages[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2154-2161 (in Chinese).
- [20] 梁健, 王俊杰, 郭永军, 等. 不同地理群体菲律宾蛤仔表型性状的相关性与通径分析 [J]. 水产科学, 2020, 39(1): 40-47.
 Lian J, Wang J J, Guo Y J, *et al.* Correlation and path analysis of phenotypic traits in different geographical groups of Manila clam *Ruditapes philippinarum*[J]. Fisheries Science, 2020, 39(1): 40-47 (in Chinese).
- [21] 何俊, 蓝天一, 刘颖, 等. G7 代二龄泥蚶生长性状的相关性和 通径分析 [J]. 集美大学学报 (自然科学版), 2022, 27(2): 107-113.

He J, Lan T Y, Liu Y, *et al.* Correlation and path analysis of growth traits of *Tegillarca granosa* after 7 generations of breeding[J]. Journal of Jimei University (Natural Science Edition), 2022, 27(2): 107-113 (in Chinese).

[22] 联绪云,马维林,李相普,等. 梭鱼 (Liza haematocheila) 外部 形态性状对体重影响效果分析 [J]. 海洋与湖沼, 2011, 42(4): 530-537.

> Geng X Y, Ma W L, Li X P, *et al.* Morphometric attributes to body weight for the redlip mullet *Liza haematocheila*[J]. Oceanologia et Limnologia Sinica, 2011, 42(4): 530-537 (in Chinese).

[23] 杨贵强.不同月龄哲罗鲑主要形态性状与体重的关系 [J]. 动物学杂志, 2016, 51(5): 876-886.

Yang G Q. The relationship between main morphometric and body weight of Taimen (*Hucho taimen*) at the different months[J]. Chinese Journal of Zoology, 2016, 51(5): 876-886 (in Chinese). [24] 霍堂斌,郑文军,李耕,等.双台子河口刀鲚不同年龄重点形态性状对体重的影响[J].安徽农业大学学报,2017,44(2): 242-247.

> Huo T B, Zheng W J, Li G, *et al.* Effects of major morphometric attributes on body weight of the different age *Coilia nassu* from Shuangtaizi estuary[J]. Journal of Anhui Agricultural University, 2017, 44(2): 242-247 (in Chinese).

[25] 朱文, 叶坤, 王志勇. 黄姑鱼"金鳞1号"形态性状对体重的影响分析 [J]. 集美大学学报 (自然科学版), 2018, 23(4): 249-257.

Zhu W, Ye K, Wang Z Y. The effects of morphological traits on body weight of new variety *Nibea albiflora* (Richardson) "Jinlin1"[J]. Journal of Jimei University (Natural Science Edition), 2018, 23(4): 249-257 (in Chinese).

- [26] 吴新燕,梁宏伟,罗相忠,等.不同月龄长丰鲢形态性状对体质量的影响[J].南方水产科学,2021,17(3):62-69.
 Wu X Y, Liang H W, Luo X Z, et al. Effects of morphological traits on body mass of Changfeng silver carp (*Hypophthalmichthys molitrix*) at different ages[J]. South China Fisheries Science, 2021, 17(3): 62-69 (in Chinese).
- [27] 马凯, 佟广香, 匡友谊, 等. 北极茴鱼形态性状对体重影响效果分析 [J]. 中国水产科学, 2022, 29(6): 825-833.
 Ma K, Tong G X, Kuang Y Y, *et al.* Effect of morphological traits on body weight of *Thymallus arcticus*[J]. Journal of Fishery Sciences of China, 2022, 29(6): 825-833 (in Chinese).
- [28] Gisbert E, Asgari R, Rafiee G, et al. Early development and allometric growth patterns of beluga Huso huso (Linnaeus, 1758)[J]. Journal of Applied Ichthyology, 2014, 30(6): 1264-1272.
- [29] Song Y Q, Cheng F, Zhao S S, et al. Ontogenetic development and otolith microstructure in the larval and juvenile stages of mandarin fish *Siniperca chuatsi*[J]. Ichthyological Research, 2019, 66(1): 57-66.
- [30] 唐瞻杨,肖俊,李莉萍,等.尼罗罗非鱼(Oreochromis niloticus)不同月龄性状的主成分与判别分析[J].海洋与湖沼, 2012,43(2):288-293.

Tang Z Y, Xiao J, Li L P, *et al.* Principal component and discriminant analyses of traits of Nile tilapia (*Oreochromis niloticus*) at different ages[J]. Oceanologia et Limnologia Sinica, 2012, 43(2): 288-293 (in Chinese).

[31] 区又君,吉磊,李加儿,等.卵形鲳鲹不同月龄选育群体主要 形态性状与体质量的相关性分析[J].水产学报,2013,37(7): 961-969. Ou Y J, Ji L, Li J E, *et al.* Correlation analysis of major morphometric traits and body weight of selective group at different month ages of *Trachinotus ovatus*[J]. Journal of Fisheries of China, 2013, 37(7): 961-969 (in Chinese).

- [32] 黄伟卿, 余祚溅. 不同生长时期黄姑鱼形态性状对体质量的 影响效果分析 [J]. 水产科学, 2016, 35(5): 557-561.
 Huang W Q, Yu Z J. Correlation analysis of morphometric traits on body weight of spotted maigre *Nibea albiflora* at different growth stages[J]. Fisheries Science, 2016, 35(5): 557-561 (in Chinese).
- [33] 李松岗. 实用生物统计 [M]. 北京: 北京大学出版社, 2002: 1-256.

Li S G. Practical biostatistics[M]. Beijing: Peking University Press, 2002: 1-256.

[34] 联绪云, 王雪惠, 孙金生, 等. 中华绒螯蟹 (Eriocheir sinensis) 一 龄幼蟹外部形态性状对体重的影响效果分析 [J]. 海洋与湖 沼, 2007, 38(1): 49-54.

> Geng X Y, Wang X H, Sun J S, *et al.* Morphometric attributes to body weight for juvenile crab, *Eriocheir sinensis*[J]. Oceanologia et Limnologia Sinica, 2007, 38(1): 49-54 (in Chinese).

[35] 张凯强, 李刚, 王庆龙, 等. 淡水养殖花鲈形态性状与体质量的相关性及通径分析 [J]. 中国海洋大学学报, 2023, 53(9): 58-68.

Zhang K Q, Li G, Wang Q L, *et al.* Correlation and path analysis of morphological traits and body weight of *Lateolabrax maculatus* in freshwater culture[J]. Periodical of Ocean University of China, 2023, 53(9): 58-68 (in Chinese).

[36] 蓝军南,区又君,李俊伟,等.封闭式循环水养殖7月龄四指 马鲅幼鱼形态性状对体质量的影响[J]. 生态科学, 2020, 39(5): 204-210.

> Lan J N, Ou Y J, Li J W, *et al.* Effects of morphometric traits on body weight of 7-month-old *Eleutheronema tetradactylum* in enclosed recirculating aquaculture[J]. Ecological Science, 2020, 39(5): 204-210 (in Chinese).

[37] 王晓龙, 李莉, 王雪, 等. 6 月龄斑头鱼形态性状与体质量的相关性和通径分析 [J]. 渔业研究, 2022, 44(1): 52-59.
Wang X L, Li L, Wang X, *et al.* Correlation and path coefficient analysis on body weight and morphometric traits of *Hexagrammos agrammus* at 6-month-old[J]. Journal of Fisheries Research, 2022, 44(1): 52-59 (in Chinese).

https://www.china-fishery.cn

Relationship between phenotypic morphological traits and body weight of *Hippocampus abdominalis* at different months

XIAO Huiyu^{1,2}, Ma Aijun^{2,3*}, SUN Zhibin^{2,3*}, WANG Xin'an^{2,3}, SUN Weiheng², CI Xiaojing⁴, YU Lanliang⁴

1. Fisheries College, Ocean University of China, Qingdao 266003, China;

2. State Key Laboratory of Mariculture Biobreeding and Sustainable Goods,

Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology,

Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,

China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Qingdao), Qingdao 266071, China;

3. Laboratory for Marine Biology and Biotechnology,

Qingdao Marine Science and Technology Center, Qingdao 266237, China;

4. Weihai Yinze Biotechnology Co., Ltd., Weihai 264404, China

Abstract; Hippocampus abdominalis is the largest known species of seahorse, primarily distributed in the seas of Australia and New Zealand. It had faster growth rates, higher survival rates, stronger stress resistance, and easier breeding, thus introducing to China in 2016. Current research primarily focused on reproductive physiology, pharmacological effects and aquaculture ecology, while there had been no reports on genetic breeding research. Under high-density single-species breeding conditions, many breeding varieties would face the fate of germplasm degradation and restricted industrial development space unless selection of superior varieties was carried out promptly. Accordingly, this article launched the research on selecting superior varieties of H. abdominalis. We sought to identify the main phenotypic morphological traits that affect weight to explore the growth characteristics of *H. abdominalis* and analyze the impact of phenotypic morphological traits on weight at different ages. We randomly selected 60 individuals from 1 to 5-month-old H. abdominalis pools each month for four consecutive months, measured their weight and seven phenotypic traits, used correlation analysis, multiple regression analysis, and path analysis to analyze the relationships between traits, and used stepwise regression analysis to establish weight models for *H. abdominalis* of different ages. The results showed that the correlation coefficients between the measured phenotypic traits and weight at 1, 2, 3, and 4 months of age were highly significant (P<0.01), while at 5 months of age, except for the snout length, which was not correlated with weight, the other phenotypic traits were significantly correlated with weight (P < 0.01). The phenotypic traits that most directly affected weight at 1 and 2 months of age were the length from the posterior margin of the cephalic branchial covered to the tail tip (r_1 =0.615, r_2 =0.334), with the highest degree of direct determination of weight (r_1^2 =37.8%, r_2^2 =11.2%). At 3, 4, and 5 months of age, the phenotypic traits that most directly affected weight were the width at the dorsal fin (r_3 =0.792, $r_4=0.619$, $r_5=0.397$), with the highest degree of direct determination of weight ($r_3^2=62.7\%$, $r_4^2=38.3\%$, $r_5^2=15.8\%$). The regression coefficients $R_1^2=0.932$, $R_2^2=0.915$, $R_3^2=0.958$, $R_4^2=0.932$, $R_5^2=0.877$ for the selected phenotypic traits at different ages indicated that these selected traits were the main traits affecting weight. Using the dorsal fin width (DFW), cephalic gill covered long from posterior margin to caudal tip (CPCT), dorsal fin thickness (DFT), dorsal fin long from posterior margin to caudal tip (DFPCT), head and neck thickness (HNT), head length (HL) and snout length (SL) as independent variables, we established a regression equation to estimate the weight of H. abdominalis at 1-5 months of age. This research showed that in selecting H. abdominalis by weight, their growth characteristics should be fully considered, and the traits selected at different ages should be based on different criteria. This research could provide theoretical guidance for the weight selection of *H. abdominalis*, thereby improving selection accuracy and efficiency.

Key words: Hippocampus abdominalis; morphological traits; body weight; correlation analysis; path analysis

Corresponding authors: MA Aijun. E-mail: maaj@ysfri.ac.cn;

SUN Zhibin. E-mail: sunzb@ysfri.ac.cn

Funding projects: National Key Research and Development Program of China (2022YFE0203900); National Modern Agricultural Industry Technology System (CARS-47-01) ; Weihai Marine Industry Key Technology "Unveiling" Project (2022-03); Central Public-interest Scientific Institution Basal Research Fund, CAFS (2023TD26); Science and Technology Project of Guangdong Province (20221207)