DOI: 10.11964/jfc.20220913707

长江中上游干流鱼类多样性与外来种入侵对 群落结构的影响

王鑫洋^{1,2}, 夏 聪^{1,2}, 戴逢斌³, 张媛媛⁴, 唐文乔^{1,2}, 刘 东^{1,2*} 1.上海海洋大学,海洋动物系统分类与进化上海高校重点实验室,上海 201306; 2.上海海洋大学,农业农村部稻渔综合种养生态重点实验室,上海 201306; 3.中 国环境科学研究院,国家环境保护区域生态过程与功能评估重点实验室,北 京 100038; 4.北京动物园,圈养野生动物技术北京市重点实验室,北京 100044

摘要:

【目的】确定长江鱼类多样性变化的驱动因素。

【方法】通过野外调查结合文献资料,分析长江干流鱼类群落多样性 指数和群落结构,比较历史和现今两个时期鱼类群落系统发育的α、 β多样性指数的变化。

【结果】现今长江干流土著鱼类 174 种,隶属于 92 属 22 科 9 目。现 今较历史时期,长江干流土著种减少 47 种,特有鱼类减少 27 种,入 侵种增加 11 种。长江中游与上游干流鱼类群落组成具有明显差异性, 上游干流鱼类群落生物多样性高于中游,群落分歧主要为 43 个物种贡 献。从历史到现今,所有物种和土著种 α 水平的平均分类学差异性指数 (Δ^{+})增加,分类学差异性变异指数 (Λ^{+})值差异减小,土著种的丢失, 造成群落 α 多样性差异变小。中游与上游干流群落 β 多样性变化明显, 变化过程主要由群落嵌套驱动。中游与上游干流鱼类群落系统发育分 类学差异性指数 ($\beta_{sor,phy}$)由 0.290 到 0.314 的变化,以群落嵌套 $\beta_{sne,phy}$ 由 0.054 到 0.085 的变化为主要贡献,土著种变化不明显,外来入侵种 的获得,导致群落分类群单元变化,增加了群落系统发育 β 多样性的 差异值。

【结论】长江干流土著种的丢失和外来种的入侵,改变了鱼类群落的 时空格局,人类活动和生境变化显著地影响了长江干流鱼类群落系统 发育多样性。

关键词: 鱼类; 群落结构; 生物多样性; 物种入侵; 长江

人类活动对生态系统造成的生境破坏、环境污染、过度开发、物种灭绝等现象,已成为当前生物多样性危机的显著特征^[1]。生物多样性对维持生态系统的稳定性具有重要意义,2021年10月在昆明召开的"2020年联合国生物多样性大会"强调生态系统的自然收益,提出生物多样性发展愿景,关切生物多样性的持续丧失及持续发展目标。河流生物多样性的危机,主要来自水利工程建设产生的一系列生态问题^[2]。例如,水电站建设造成河流原本生境片段化,导致洄游型鱼类

第一作者: 王鑫洋,从事渔业资源调查与评估研究, E-mail: 1520883904@qq.com

通信作者:刘东,从事鱼类系统分类 学研究,鱼类多样性调查与评估,经 济鱼类放流资源增殖效果评估,以及 鱼类繁育生物学的研究。发表研究论 文80余篇,参编专著4部及《鱼类学》 "十三五"规划教材, E-mail: dliu@shou.edu.cn

资助项目: 生态环境部生物多样性调查与评估项目 (2019HJ2096001006)

收稿日期: 2022-09-22 修回日期: 2023-03-09

文章编号: 1000-0615(2025)02-029308-15 中图分类号: S 932.4 文献标志码: A

作者声明本文无利益冲突

©《水产学报》编辑部(CC BY-NC-ND 4.0) Copyright © Editorial Office of Journal of Fisheries of China (CC BY-NC-ND 4.0)

无法正常繁殖:改变河流水文情势和含沙量, 破坏鱼类产卵栖息地:河流型水库蓄水扰乱了 水温升降规律, 鱼类繁殖时间被迫延迟^[2]。急 流江段变成河道型缓流水库,土著鱼类被迫迁 移至库尾和支流中,成为偶见种、濒危物种, 甚至消失,库区型鱼类取而代之成为优势种 类^[3]。此外,外来物种入侵亦是影响河流生物 多样性的一个主要因素^[4]。我国许多河流均遭 受入侵鱼类不同程度的危害,争夺土著种食物 和生存空间,占据优势地位,破坏生态系统, 导致土著种灭绝^[5]。入侵鱼类可能与土著鱼类 杂交,破坏鱼类区系的独特性并导致纯种灭绝, 污染土著鱼类种质资源¹⁶。外来种入侵和土著 种灭绝的共同作用,影响了鱼类群落的物种丰 富度、群落功能以及系统发育多样性^[7]。涉水 工程和外来种入侵对鱼类多样性影响的研究, 大多数基于 α 多样性分析群落种类组成变化, 部分研究在β多样性水平上分析群落组成的变 化幅度,较少研究涉及鱼类群落系统发育多样 性变化。

不同于 α 多样性度量群落物种组成, β 多 样性是量化群落分化程度,表征一个群落不同 时期或群落之间差异性的变化,常用分类学差 异性指数 (taxonomic dissimilarity, β_{sar}) 公式来 计算^[7]。这种差异性变化包括2个过程:群落嵌 套 (β_{sne}) 和群落周转 (β_{sim})。嵌套模式体现纵向 梯度渐变的环境条件中组成群落的物种丢失或 获得,周转模式揭示断裂变化的环境条件中同 时发生组成群落物种的丢失和获得^[8]。系统发 育多样性反映了群落物种的进化历史,体现群 落物种之间的生态学差异,系统进化树分支中 的物种生活史的改变是对环境变化的响应^[7]。 入侵种通过进化和生态过程改变系统发育多样 性, 塑造生物多样性的模式^[7]。基于物种的林 奈分类树的距离量化物种之间关系的分类学差 异性分析方法,结合群落物种存在或缺失数据, 分析群落系统发育β多样性,探求在进化和生 态过程中群落系统发育 β 多样性变化的驱动因 素^[9]。对于长江干流水系,还缺乏鱼类群落系 统发育B多样性的研究。长江作为世界第三大 河流,流域范围广、跨度大,不同的地形地貌 和丰富多样的气候条件孕育了多样性的鱼类资 源。长江流域水系有鱼类400余种,纯淡水鱼 类 350 余种,物种数量位居全国各水系之首,

是鱼类资源宝库和经济鱼类的种质资源库,具 有不可或缺的生态价值^[10]。长江干流水系国家 重点保护野生动物中一级鱼类 5 种、二级鱼类 13 种、濒危鱼类 44 种。由于过度捕捞、水利 工程、水体污染、生物入侵等因素直接或间接 影响,长江鱼类资源严重衰退。白鲟 (Psephurus gladius)、鲥 (Tenualosa reevesii)等珍稀鱼 类在长江已功能性灭绝^[11-12]。因此,自 2021 年 1月开始实施"长江十年禁渔"计划,目的是恢 复长江流域鱼类群落和水生生物资源^[13]。

本实验以长江中上游干流鱼类群落为研究 对象,通过文献资料结合野外调查,了解长江 干流鱼类物种数量及其分布情况,分析历史和 现今群落α和β多样性,以及系统发育β多样 性的变化,探讨群落物种组成和系统发育多样 性变化的驱动因素,以期为长江生态修复和"十 年禁渔"效果评价提供理论支撑。

1 材料与方法

1.1 研究区域

长江发源于青藏高原的唐古拉山脉, 横跨 我国 11 个省区市,由上海崇明注入东海,贯穿 我国高原、低山和平原三大地貌阶梯。长江流 域气候条件复杂,特殊的地貌和水文环境造就 了多样的生境类型,孕育了丰富的鱼类资源。 本次调查长江干流水系以宜昌市葛洲坝和九江 市湖口为界,调查上游干流水系(宜宾市向家坝 至葛洲坝)和中游干流水系(葛洲坝至湖口)。上 游干流全长1030km,涉及金沙江下游下段、 长江上游珍稀特有鱼类国家级自然保护区和三 峡水库等,有横江、岷江、沱江和赤水河等支 流汇入,河道蜿蜒曲折、潭沱相间,水流急缓 不一。中游干流全长 955 km, 接纳了汉江和清 江等支流,以及从岳阳城陵矶汇入长江的洞庭 湖,沿岸湖泊星罗棋布,包括多处湿地自然保 护区和湿地公园,河道逐渐开阔,流速减缓。

1.2 调查点设置

参考《内陆水域渔业自然资源调查手册》^[14], 结合研究区域的海拔、流速、水深等水文条件 和生境类型,在长江干流水系设置18个采样点, 覆盖了重要的生态类型。长江上游干流水系的 采样点:向家坝坝下横江流入金沙江的汇流点 江段(宜宾上,YBS),是胭脂鱼(*Myxocyprinus* asiaticus)、长江鲟 (Acipenser dabryanus) 等珍稀 鱼类在长江分布的最上端;岷江入长江的汇流 点江段 (宜宾下,YBX)、沱江汇流点江段 (泸州, LZ)、赤水河汇流点江段 (合江,HJ)、嘉陵江汇 流点江段 (江北,JB) 和乌江汇流点江段 (涪陵, FL),均为一级支流入江交汇处江段,也是长江 上游珍稀特有鱼类国家级自然保护区的重要地 段;重庆江津区油溪镇至朱杨镇江段 (江津, YJ),为河漫滩和深潭生境;万州江段 (WZ)和 巫山江段 (WS),为三峡库区腹心,是典型的河 道型库区生境。

长江中游干流水系的采样点: 葛洲坝坝下 江段 (GZB) 为泄洪冲刷生境,底质和岸线多为 人工基质和基岩;清江入长江的汇流点江段 (QJ) 是中华鲟 (*A. sinensis*) 重要产卵场之一;石 首江段 (SS) 和监利江段 (JL) 为河湾生境类型, 水流缓慢,底质为淤泥和细沙。嘉鱼江段 (JY) 和黄冈江段 (HG) 为江心沙洲生境类型;汉江入 长江的汇流点江段 (WH),是长江最大一级支流 汉江流入江交汇处江段;城陵矶江段 (CLJ) 和 湖口江段 (HK),分别为洞庭湖和鄱阳湖进入长 江的江湖通道 (图 1)。

1.3 调查时间范围界定

对长江干流水系鱼类物种多样性的调查, 包括文献资料调查和现场调查,涉及时间较长。 20世纪 50年代之前,长江鱼类物种多为古代 典籍和地方志记载,名录难以考证,鱼类物种 与 50—60年代的长江鱼类调查资料并无太大差 异。实质上物种变动最大的时期为 2003年三峡 大坝完全截流之后。为了更好地比对长江干流 水系鱼类物种多样性变动情况,以 20世纪 50 年代—2003年的文献作为资料来源^[15-18],收集 长江干流水系历史时期鱼类物种数据。2003年 之后的文献资料^[19-2]结合本次野外调查的数据, 作为长江干流水系当前鱼类物种数据,分析鱼 类物种多样性和系统发育多样性的变化趋势。

1.4 调查方法

依据历年长江干流水系月流径数据^[22],分 别于2020年10—12月(平水期), 2021年3—5月 (枯水期), 2021年6-8月(丰水期)对采样点进 行 3 次野外调查, 部分采样点因受 Covid-19 疫 情影响, 仅进行了 1~2 次调查。每个调查采样 点利用当地渔业渔政管理处批准的科研调查船 进行地笼、刺网和流刺网作业,每个时期每个 样点捕捞作业重复3次,依据渔民丰富的捕捞 经验确定采样点、渔具及作业时间。每次作业 时,距离岸边 5~20 m 水域,串联放置 10 个地 笼,规格为0.4 m×0.4 m×20.0 m,网目为5 mm, 作业时间为48h,主要采集底栖性鱼类;放置 2 m×100 m、3 m×100 m 规格的刺网, 网目为 2、 3、4、5、7mm各2条,作业时间12h,主要 采集中上层鱼类; 或规格为 1.5 m×200 m、网目 为3mm的流刺网,作业时间2h,主要采集大 银鲷 (Xenocypris macrolepis) 和吻 鮈 (Rhinogobio typus)类。现场对收集的样本依据相关文献进 行物种鉴定^[23-27],结合 Fishbase (www.fishbase. org) 数据库^[28] 核实物种名称。使用直尺测量样 本长度,精确到1mm,电子秤称量体重,精确 到 0.1 g。标本现场拍照记录之后,冰鲜运回上 海海洋大学鱼类标本馆,贴上标签信息,70% 的乙醇保存。本研究获得了上海海洋大学实验 动物管理和使用伦理委员会批准 (SHOU-PW-

Fig. 1 Sampling schematic diagram of the middle and upper reaches of the Yangtze River

2021-028),实验过程中操作人员严格遵守上海 海洋大学动物伦理委员会的伦理规范,并按照 上海海洋大学伦理委员会制定的规章制度执行。

1.5 数据分析

鱼类物种 α 多样性分析 鱼类物种 α 多 样性采用 Margalef 丰富度指数 $(D)^{[29]}$ 、Shannon-Wiener 多样性指数 $(H')^{[30]}$ 、Pielou 均匀度指数 $(J')^{[31]}$ 、Simpson 优势度指数 $(C)^{[32]}$ 表征各调查 点的鱼类多样性状况,公式:

$$D = (S - 1)/\ln N$$
$$H' = -\sum_{i=1}^{s} N_i \ln N_i$$
$$J' = H'/\ln S$$

 $C = 1 - \sum (N_i)^2$

式中, *S*为鱼类物种数(种), *N*为所有鱼类个体总数(尾), *N_i*为第*i*物种数量占总数量百分比(%)。

优势种采用相对重要性指数 (index of relative importance, IRI) 分析, 计算公式:

 $IRI = (W_i + N_i) \times F_i$

式中, W_i 为第 *i* 物种的重量占总重量百分比 (%), F_i 为 *i* 物种的出现次数占总调查样点的百 分比 (%)。IRI \geq 1 000 为优势种, 100 \leq IRI<1 000 为主要种, 10 \leq IRI<100 为常见种, 1 \leq IRI<10 为一般种, IRI<1为稀有种^[33]。

鱼类群落β多样性分析 鱼类群落β多 样性体现了群落物种组成的时空变化,反映不 同群落间物种组成的差异性,采用 Sørensen 公 式^[34],计算公式:

$$\beta_{\rm sør} = \frac{b+c}{2a+b+c}$$

式中, a 表示两个群落相同物种数, b 和 c 表示 两个群落各自不同的物种数。 β_{sor} 的值取决于两 个群落中各自独有的物种数以及两个群落中物 种丰富度的差异, 当两个群落的物种组成完全 相同时 (b=c=0), $\beta_{sor}=0$; 当物种组成完全不同 时 (a=0), $\beta_{sor}=1$ 。Baselga^[35]提出将 β 多样性指 数细分为周转指数 (β_{sin} , turnover components) 和 嵌套指数 (β_{sne} , nestedness components)。 β_{sim} 体 现群落间相互替代的物种数, 不受物种丰富度 的影响^[36]。 β_{sne} 体现的是群落间物种丰富度差异 的增加导致群落间差异性增加。 β_{sim} 和 β_{sne} 的计 算公式[8]:

$$\beta_{\text{sim}=} \frac{\min(b,c)}{a + \min(b,c)}$$
$$\beta_{\text{sne}} = \frac{\max(b,c) - \min(b,c)}{a + \min(b,c)} \times \frac{a}{2a + b + c}$$

鱼类群落结构相似性分析 采用 Jaccard 相似性指数^[37]分析鱼类群落结构相似性, 计算公式:

 $C_i = C/(A + B - C)$

式中, A、B为两个采样点的鱼类物种数, C为 A和 B两个采样点共有的鱼类物种数。当 0< C_j <0.25,为极不相似;当 0.25< C_j <0.50,为 中等不相似;当 0.50< C_j <0.75,为中等相似; 当 0.75< C_j <1,为极相似。根据不同调查采样点 鱼类物种相对丰度数据建立矩阵,横坐标为种 类,纵坐标为调查采样点,使用 Primer Premier 5.0软件,应用 Bray-Curtis聚类 (Cluster)和非度 量多维尺度分析 (non-metric Multi-Dimensional Scaling, NMDS)的方法^[38],对鱼类群落结构进 行聚类分析。

鱼类群落系统发育多样性分析 鱼类群 落系统发育 α 多样性,选择 TD 指数 (taxonomic distinctness)进行表征 (表 1)^[39]。TD 指数 是基于林奈分类学进化树连接的任意两个物种 间的平均路径长度,计算物种间的亲缘关系, 包括平均分类学差异性指数 (Δ^+)和分类学差异 性变异指数 (Λ^+)^[40]。 Δ^+ 代表任意两个物种间的 平均路径长度, Δ^+ 减小,表明系统发育多样性 水平降低。 Λ^+ 代表分类学进化树的均匀度, Λ^+ 减小,说明群落的分类学进化树变得更为均 匀,差异性降低^[41]。计算公式:

$$\Delta^{+} = \left[\sum_{i < j} w_{ij}\right] / \left[S\left(S - 1\right) / 2\right]$$

表 1 各分类等级所占权重及用来计算 TD 指数的 进化路径长度

Tab. 1Weight of each classification and the length of
evolutionary path used to calculate TD index

分类等级 taxon	权重 weight	路径长度 branch length
种 species	1	25
属 genus	1	50
科 family	1	75
目 order	1	100

$$\wedge^{+} = \left\{ \sum_{i < j} \left[w_{ij} - (\Delta^{+})^{2} \right] \right\} / \left[S \left(S - 1 \right) / 2 \right]$$

式中,*S*为样本中的总物种数,*w_{ij}*代表任意每 对物种之间的进化路径长度。

根据 Clarke 等^[42]的线性标度,进化树中最 大的路径长度设置为 ω=100。为了辨别外来种 对系统发育路径长度的影响,分别计算所有物 种和土著种的标度值。各分类等级的路径长度 从高到低等差递减。

鱼类群落系统发育β多样性是以不同群落 在分类进化树上共有或独有的进化路径长度为 基础,表示群落之间的系统发育差异,系统发 育β多样性计算公式^[43]:

$$\beta_{\text{sor.phy}} = \frac{2\text{PD}_{\text{Tot}} - \text{PD}_k - \text{PD}_j}{\text{PD}_k + \text{PD}_j}$$

$$\beta_{\rm sim.phy} =$$

$$\frac{\min(PD_{Tot} - PD_k, PD_{Tot} - PD_j)}{PD_k + PD_j - PD_{Tot} + \min(PD_{Tot} - PD_k, PD_{Tot} - PD_j)}$$

 $\beta_{\text{sne.phy}} = \beta_{\text{sor.phy}} - \beta_{\text{sim.phy}}$

式中,PD_{Tot}表示群落系统发育进化树中所有物种的总进化路径长度,PD_k和PD_j分别表示单个群落中所有物种的总进化路径长度。

统计分析 使用 Excel 2019 软件对数据 进行分析,群落间平均相似性及相异性采用 PRIMER 5.0 软件进行 Cluster 聚类和 ANOSIM 验证、NMDS 排序和 SIMPER 分析及绘图, Origin 2021 软件绘制群落结构相似性热图^[44]。

2 结果

2.1 长江干流水系鱼类物种组成及变化

长江中上游干流水系野外调查捕获鱼类 107种,其中外来种7种,隶属于6目18科 70 属。中游干流 75 种,上游干流 92 种,中游 和上游干流共享 60 种。鲤形目 (Cypriniformes) 74种、鲇形目 (Siluriformes) 18种、鲈形目 (Perciformes) 10种、鲟形目 (Acipenseriformes) 3种, 鲱形目 (Clupeiformes) 和颌针目 (Beloniformes) 各1种。长江特有鱼类25种,国家一 级保护物种2种,分别为中华鲟(成鱼,135 mm)和长江鲟;二级保护物种5种:胭脂鱼、 圆口铜鱼 (Coreius guichenoti)、岩原鲤 (Procypris rabaudi)、红唇薄鳅(Leptobotia rubrilabris)和 长薄鳅 (L. elongata)。上游干流相对数量以鲢 (Hypophthalmichthys molitrix)、草鱼 (Ctenopharyngodon idella) 和鲤 (Cyprinus carpio) 为主;相 对重量以光泽黄颡鱼(Tachysurus nitidus)、似鳊 (Pseudobrama simoni) 和蛇 鮈 (Saurogobio dabrvi) 为主; 鲢、光泽黄颡鱼为优势种。中游干 流相对数量以鲂 (Megalobrama mantschuricus)、 银鲷(Xenocypris macrolepis)和铜鱼为主;相对 重量以鲂、光泽黄颡鱼和银鲴为主; 鲂、银鲴、 铜鱼和鳜 (Siniperca chuatsi) 为优势种 (表 2)。

历史上长江中上游干流水系土著鱼类 219种,隶属于109属28科13目,外来种8种。 现今调查到土著鱼类174种,隶属于92属22

表 2 长江中上游干流野外调查主要渔获物组成

Tab. 2	Main catches of fishes in the middle and upper re	eaches of the Yangtze River
--------	---	-----------------------------

<i>h/m</i> ∓h*		上游 upst1ream		中游 midstream			
4辺本中 species*	相对数量/% N	相对重量/% W	优势度 IRI	相对数量/% N	相对重量/% W	优势度 IRI	
鲂 M. mantschuricus	4.49	1.11	248.93	13.84	28.08	3 2 6 0.44	
银鲴 X. macrolepis	0.23	0.24	10.60	10.48	7.31	1779.19	
铜鱼 C. heterodon	5.98	5.18	868.24	10.13	7.07	1337.90	
鳜 S. chuatsi	0.31	0.46	17.15	8.13	3.77	1057.75	
鲢 H. molitrix	13.42	3.08	1 283.31	8.28	1.98	912.07	
光泽黄颡鱼 T. nitidus	0.98	15.14	1612.60	0.48	7.43	614.93	
草鱼 C. idella	6.21	0.59	453.36	3.64	0.29	349.22	
似鳊 P. simoni	0.77	6.86	592.85	0.48	3.60	272.19	
鲤 C. carpio	8.67	2.08	955.77	2.54	0.85	263.12	
蛇鉤 S. dabryi	1.58	7.53	809.87	0.12	1.15	70.19	

注:*.上游和中游干流水系相对数量、相对重量和IRI排在前3名的物种情况。

Notes: *. only the top three species in relative number, relative weight and IRI are listed in the table.

水产学报, 2025, 49(2): 029308

科 9 目,外来种 19 种。现今野外调查未能采集 到样本的土著鱼类 49 种 (22.3%),其中上游干 流为 35 种,中游干流为 28 种,分别减少 18.68% 和 24.53% (表 3)。长江特有鱼类由历史 上 95 种下降到现今 68 种。现今野外调查发现 国家级保护鱼类 12 种,濒危物种 25 种,鲥、 白鲟等濒危物种近 20 年内未有发现。

2.2 鱼类群落结构

长江干流鱼类群落 α 多样性 长江干流 水系不同江段间鱼类物种多样性呈现显著差异 (P<0.05),上游和中游 9 个江段渔获物 D 均值 分别为 5.96 和 5.57, H'均值分别为 2.64 和 2.40, J'均值分别为 0.75 和 0.68, C 均值分别为 0.87 和 0.81,上游干流生物多样性状况明显高于中 游干流。D 值为 3.56~8.84,最大值为合江段 (HJ),最小值为 GZB; H'值为 1.65~3.22,最大 值为 YBS,最小值为 QJ; J'值为 0.46~0.86, YBS 和 YBX 最大,QJ 和 CLJ 最小(图 2)。 长江千流鱼类群落相似性 基于 Jaccard 相似性指数分析长江干流鱼类群落相似性, GZB-QJ、SS-JY、JL-HG、CLJ-HK 之间江段的 鱼类群落相似性 (SI) 最高, *Cj*>0.5,达到中等 相似,但未及极相似水平 (图 3)。这些鱼类群落 中等相似的江段,均为长江中游干流调查采样 点。就地理位置而言,仅 GZB 与 QJ 彼此邻近, 其他鱼类群落中等相似的江段均不相邻,表明 中游干流江段鱼类群落结构有趋同性。上游干 流各江段鱼类群落之间 Jaccard 指数较小,相似 性水平为不相似或极不相似,鱼类群落结构组 成差异性较大,说明上游干流鱼类群落结构的 异质性。

鱼类群落 Cluster 聚类结果显示,依据 Bray-Curtis 相似性系数为 39.21% 的聚类结果,18 个 调查江段的群落归为 3 群组, Ⅰ 群组包括上游 干流 8 个群落,Ⅱ 群组包括中游干流 9 个群落, Ⅲ 群组仅 1 个江北群落 (JB) (图 4)。ANOSIM

表 3 长江中上游干流鱼类物种变化情况

Tab. 3 Change statistics of the fish species in the middle and upper reaches of the Yangtze River

江氏	历史/尾 historical			现今/尾 current			变化/% variation	
江校 region	所有种 entire	土著种 native	入侵种 invasive	所有种 entire	土著种 native	入侵种 invasive	土著种 native	入侵种 invasive
中游 middle	164	163	1	129	123	6	-24.53	+500.0
上游 upper	190	182	8	166	148	18	-18.68	+125.0
总计 total	227	219	8	193	174	19	-20.55	+137.5

注:"-"表示减少;"+"表示增加。

Notes: "-" indicates reduction; "+" indicates increase.

Fig. 2 Diversity of fish communities in the middle and upper reaches of the Yangtze River

检验结果显示,各群组之间差异极显著 (*R*= 0.661, *P*=0.001)。NMDS 排序分析显示,各群 组有明显的聚类关系,平均协强系数 (stress) 值 为 0.14,说明 Cluster 聚类结果稳定可靠。

对 Cluster 聚类群组相似性或相异性进行 SIMPER 分析,发现群组间平均相似性和相异 性贡献之和占 90% 以上的特征种和分歧种 (表 4)。 群组 I 的相似性为 39.21%,特征种有蛇鉤 (10.24%)、光泽黄颡鱼 (9.53%)、鳌(5.67%)、瓦 氏黄颡鱼 (5.63%)等 24 种。群组 II 的相似性为 49.27%,特征种有铜鱼 (9.06%)、鳊 (7.62%)、 鳌(7.62%)、鳜 (6.27%)等 25 种。群组 I 与 II 的

图 3 长江中上游干流鱼类群落结构相似性

Fig. 3 Structural similarity of fish communities of the middle and upper reaches of the Yangtze River

(a) 聚类图; (b) NMDS 图。

Fig. 4 Cluster and NMDS diagrams of fish communities in the middle and upper reaches of the Yangtze River (a) the clustering diagram; (b) the NMDS diagram.

%

相似贡献率 similarity contribution rate 相异贡献率 differential contribution rate 物种 species I (39.21) II (53.14) I & II (68.40) I & III (69.69) II & III (77.48) **鳌** Hemiculter leucisculus 5.67 7.62 5.04 10.59 8.41 贝氏餐 Hemiculter bleekeri 4.22 0 2.23 2.07 2.21 鳊 Parabramis pekinensis 0 7.62 0 3.77 3.84 草鱼 C. idella 1.84 1.84 0.99 1.15 0 赤眼鳟 Squaliobarbus curriculus 0 1.39 1.22 0 1.17 唇螖 Hemibarbus labeo 3.24 0 1.82 2.45 1.66 粗唇鮠 Pseudobagrus crassilabris 2.53 3 00 2.06 1.93 1.89 达氏鲌 Chanodichthys dabryi 0 4.48 2.01 0 2.22 长江鲟 A. dabryanus 0 1.41 0 1.35 1.39 大鳍鳠 Hemibagrus macropterus 0 0 1.10 3.23 2.29 大鳍鳞 Acheilognathus macropterus 0 1 31 0 1.55 1.44 刀鲚 Coilia nasus 5.23 2.77 1.52 2.57 0 短身金沙鳅 Jinshaia abbreviata 0 0 0 0 0.76 鲂 M. mantschuricus 0 4.50 5.04 2.20 3.98 鰄 Elopichthys bambusa 0 0 0 0.81 0 光泽黄颡鱼 T. nitidus 9.53 2.13 3.51 1.97 4.16 S. chuatsi 鳜 0 6.27 0 3.03 3.11 红鳍原鲌 Chanodichthys erythropterus 0 0 0.95 1.93 1.20 黄颡鱼 T. fulvidraco 0 1 58 0 1.50 1.65 黄尾鲴 Xenocypris davidi 0 0 1.05 0 0 鲫 C. auratus 4.38 3.52 2.008.43 6.58 鲤 C. carpio 4.70 1.64 1.45 4.74 4.52 鲜 H. molitrix 3.65 3 00 2.21 10.59 8 4 1 麦瑞加拉鲮 Cirrhinus mrigala 0 0 0 3.09 2.48 蒙古鲌 Chanodichthys mongolicus 0 4.07 1.67 1.73 0 拟尖头鲌 Culter oxycephaloides 0 3.96 2.10 0 1.95 鲇 Silurus asotus 0 0 2.02 1.38 1.46 翘嘴鲌 Culter alburnus 3.79 3.47 1.32 1.89 1.66 蛇鉤 Saurogobio dabryi 0 10.24 3 51 2.81 1 57 似鳊 Pseudobrama simoni 3.78 1.72 2.94 3.08 1.61 铜鱼 Coreius heterodon 4.15 9.06 2.84 5.91 5.72 团头鲂 Megalobrama amblycephala 0 2.08 1.87 0 1.66 瓦氏黄颡鱼 Pseudobagrus vachellii 5 63 2.44 2.82 3 16 6.21 吻鉤 Rhinogobio typus 3.15 0 2.23 2.38 0 胭脂鱼 M. asiaticus 0 0 0 2.47 2.71岩原鲤 P. rabaudi 2.95 0 1.54 1.65 0 银鲴 0 0 Xenocypris macrolepis 5 87 5.10 4 68 Squalidus argentatus 银鮈 3.06 1.91 2.38 2.56 1.29 Hypophthalmichthys nobilis 鳙 1.95 0 0.92 4.46 3.98

表 4 长江干流鱼类各群组相似性/相异性贡献特征种

 Tab. 4
 Characteristic species contributed to average similarity/dissimilarity of the fish groups

圆口铜鱼 C. guichenoti

0

0.93

0.87

0

0

水产学报, 2025, 49(2): 029308

・续表4・

物种	相似贡献	率 similarity co	ntribution rate	相异贡献率 differential contribution rate		
species	I (39.21)	II (53.14)	I & II (68.40)	I & III (69.69)	II & III (77.48)	
	1.27	0	2.02	1.96	0	
杂交鲟 Huso huso(♀)×A. ruthenus(♂)	1.93	0	0.97	1.35	1.66	
张氏鳌 Hemiculter tchangi	2.65	0	1.82	1.94	0	
长吻鮠 Tachysurus dumerili	2.19	0	1.64	1.18	1.28	
中华倒刺鲃 Spinibarbus sinensis	2.16	0	1.97	2.78	2.58	
中华纹胸鳅 Glyptothorax sinensis	0	0	0	0.83	0	
子陵栉虾虎鱼 Rhinogobius giurinus	0	0	1.03	0.86	0	
合计 total	90.07	95.5	93.77	99.71	98.93	

相异性为 68.4%, 分歧种为铜鱼 (5.72%)、银鲷 (5.1%)、鳌(5.04%)、鲂 (5.04%)等 43 种。群组 I 与 III 的相异性为 69.69%, 分歧种为鳌(10.59%)、 鲢 (10.59%)、鲫 (8.43%)、鲤 (4.74%)等 35 种。 群组 II 与 III 的相异性为 54.24%, 分歧种为鳌 (8.41%)、鲢 (8.41%)、鲫 (6.58%)、铜鱼 (5.91%) 等 33 种。

2.3 长江干流鱼类群落β多样性和系统发育多 样性

生物群落中物种之间的亲缘关系,应用于 测量群落系统发育的多样性,能够反映群落物 种的进化历史,呈现鱼类生境的变化和生态的 差异。对长江干流中游和上游鱼类群落物种和 土著种的分析表明,从历史时期到现今,Δ⁺和 Å⁺值均有增加。相较历史而言,现今群落之间 所有物种和土著种的Å⁺差异值均明显减小(表 5)。 Å⁺差异值变小,表现了2个生态过程,即土著 种数量的减少和入侵种数量的增加。中游群落 土著种数量减少了24.53%,入侵种数量增加 500%;上游群落土著种数量减少了18.68%,入 侵种数量增加137.5%(表 3)。

在 β 水平上,分析长江干流中游与上游鱼 类群落组成的变化幅度和分化程度,结果显示, 2 个群落之间的所有物种和土著种,从历史时 期到现在, β_{sor} 上升主要是由于嵌套组分 β_{sne} 的 增加,导致中上游群落物种组成差异增大。 $\beta_{sim}减小,表明中上游相同物种的比例增加,$ $群落之间呈现同质化趋势。<math>\beta_{sim}$ 的差异值不及 β_{sne} ,促使 β_{sor} 升高(表 6)。

鱼类群落系统发育多样性分析结果表明, 中游和上游群落之间,从历史时期到现今的 $\beta_{sor,phy}$ 和 $\beta_{sim,phy}没有明显的变化,但\beta_{sne,phy}发$ 生了显著的变化(表 6),表明2个群落之间的生境存在隔离,缺乏物种扩散,形成现今长江中游和上游干流群落之间系统发育的差异性。

3 讨论

3.1 长江干流鱼类群落α多样性变化及原因

根据文献记载,长江中上游干流水系有鱼 类 227 种,其中土著种 219 种,外来种 8 种。 本次野外调查结合近期文献资料,较之历史记 录,发现中上游土著种明显减少,外来物种增 加,特有鱼类由 95 种降至 68 种。特有鱼类演 化出长江流域生态高度适应的特征,是长江水 域生态健康的重要指示物种。特有鱼类物种数 量的变化体现长江生态健康的趋势,与长江中

表 5 长江甲上游十沇鱼奕群洛 TD 指

Tab. 5	TD index for fish	communities in the	e middle and upper	reaches of the	Yangtze River
--------	-------------------	--------------------	--------------------	----------------	---------------

	所有物种 entire species				土著种 native species			
江段	Δ^+		\wedge^+		Δ^+		\wedge^+	
region	历史 historical	现今 current	历史 historical	现今 current	历史 historical	现今 current	历史 historical	现今 current
中游 middle	80.27	81.93	521.7	519.5	80.02	81.67	523.3	520.4
上游 upper	78.14	79.53	490.0	497.8	76.87	77.15	494.3	505.0

Tab. 6 β and phylogenetic diversity of the middle and upper fish communities in the Yangtze River										
群落和系统发育β多样性 communities and phylogenetic β diversity		所有	物种 entire spe	ecies	土著	土著种 native species				
		历史 historical	现今 current	变化值 Δ	历史 historical	现今 current	变化值 Δ			
群落 communities	$\beta_{ m sør}$	0.282	0.315	0.032	0.269	0.291	0.021			
	$\beta_{\rm sim}$	0.225	0.217	-0.008	0.227	0.219	-0.007			
	$\beta_{\rm sne}$	0.056	0.098	0.041	0.042	0.072	0.029			
系统发育 phylogenetic	$\beta_{\rm sor.phy}$	0.290	0.314	0.024	0.274	0.284	0.011			
	$\beta_{\rm sim.phy}$	0.235	0.228	-0.006	0.247	0.235	-0.011			
	$\beta_{\rm sne.phy}$	0.054	0.085	0.031	0.026	0.048	0.022			

表 6 长江中上游干流鱼类群落和系统发育 β 多样性

上游鱼类资源衰减趋势一致^[10]。总体来看,长 江中上游干流水系鱼类变化,表现为土著种的 减少和外来物种的增加。国家级保护鱼类因生 境变化,有些物种多年未发现踪迹,由17种下 降为12种,濒危物种由37种降至25种。外来 物种由8种增加至19种。中上游区域鱼类物种 组成的变化,反映了长江干流鱼类群落结构的 变化。

生物多样性表征了群落结构的稳定性。物种的丰富度和均匀度越高,优势度越低,群落越稳定^[44]。人类活动影响生境条件,进而影响 鱼类群落结构,具体表现在生物多样性指标 上^[45-46]。本次野外调查发现,长江上游珍稀特 有鱼类国家级自然保护区的合江和江津调查采 样点,生境较好,岸边植被较多,底质淤泥掺 杂卵石,两岸固化较低。合江采样点物种丰富 度最高(*D*=8.84)。而重庆江北调查采样点地处 市区,"两岸三带"建设工程导致岸边生境被破 坏,山岩和人工基质的河床底质,物种丰富度 最低(*D*=3.59)。本次调查基本上符合邹曦等^[47] 对长江生境评价的结果,体现了鱼类物种多样 性与生境状况之间的关联性。

河流生境的破碎化是影响鱼类物种组成的 重要因素。受三峡大坝的影响,洄游性鱼类的 通道被阻断后无法正常通行,河流水文情势和 含沙量发生改变,影响鱼类栖息场所。本次野 外调查上游优势物种已是鲢、光泽黄颡鱼等库 区型鱼类,原本适应急流生境的土著鱼类如圆 口铜鱼、长鳍吻鮈、长薄鳅 (L. elongata)等被 迫迁移至库尾和支流中、甚或消失,成为偶见 种。长江干流上游、金沙江下游的溪洛渡和向 家坝电站的建设,极大地削弱了水流速度。圆 口铜鱼、铜鱼、吻鉤、长薄鳅等卵苗不能完成 顺水漂流,本研究开展的3次野外调查,未能 捕获此类幼鱼,表明产漂流性卵的鱼类繁殖规 模已急剧下降。

鱼类物种多样性受到外来入侵种的影响[4]。 入侵鱼类在争夺土著种食物和生存空间方面占 据优势地位,同时破坏生态系统^[47]。入侵鱼类 可与土著鱼类杂交,破坏鱼类区系的独特性和 单纯性, 污染土著鱼类种质资源, 造成土著鱼 类遗传资源退化甚至丧失⁶⁰。本次野外调查发 现杂交鲟、丁鲓(Tinca tinca)、麦瑞加拉鲮等8 种外来鱼类。其中杂交鲟出现在9个调查样点 的渔获物中,并在江北江段为优势物种。外来 鱼类进入本地生态系统的途径分为有意引入和 无意引入,其中放生已成为有意引入的主要途 径^[48]。本次调查发现的鲤鲫杂交鱼和金鱼便是 放生所致,其带来的危害不容忽略。本次调查 发现,原本仅分布于长江中下游多见于湖泊的 刀鲚,已突破历史分布的湖北宜昌长江段界限, 入侵长江上游,抵达重庆涪陵,成为该水域常 见种, 推测是三峡水库为刀鲚提供了过河性湖 泊生境所致。为此,需要特别关切长江上游刀鲚事 态发展,监测种群结构变化,提出生物防治对策。

从鱼类群落系统发育多样性来看,通过历 史和现今的比较,Δ⁺明显增加,表明长江干流 鱼类群落系统发育α多样性有所上升。长江多 样的地貌类型和复杂的气候条件形成多样的生 境类型,产生了高度适应的、特有的、多为同 科的鱼类资源^[49]。例如长江特有鳅科 22 种,平 鳍鳅科 10 种。理论上,同科物种聚集导致群落 物种分类进化树路径长度减少,Δ⁺值较低。实 际上,长江干流因与土著种亲缘关系较远的外 来物种入侵,同一科属的土著种和特有种减少, 群落物种分类进化树路径增长,导致Δ+值增大。 通常认为群落△+值增大是积极的变化^[50],但若 因外来种入侵和土著种减少引起,则需要高度 关注。 Λ^{\dagger} 反映了群落分类学进化树的均匀度, △⁺减小体现群落分类学进化树的变异程度降低。 中游干流土著种群落,相较于历史,现今的∧* 值减小,反映了长江中游干流土著种的减少使 得群落分类学进化树较为均匀。与中游干流鱼 类群落相反,上游鱼类群落的∧⁺值明显变大, 表明群落分类学进化树变得更加不均匀。原本 仅分布在长江中下游的一些种类如刀鲚、尖头 행、圆尾拟鲿 (P. tenuis)、太湖新银鱼 (Neosalanx taihuensis)、大银鱼 (Protosalanx chinensis)、 沙塘鳢 (Odontobutis) 等,现今在长江上游干流 中也有发现,导致上游鱼类群落系统发育结构 的不均匀性增加。

3.2 长江干流鱼类群落β多样性变化与外来种入侵

长江干流自上而下海拔高度跨度大,调查 采样点最高 224 m, 最低 5 m, 不同的地貌和气 候特征为鱼类提供了多样化栖息地类型。上游 干流水流急湍,鱼类组成以鲤科 (Cyprinidae)、 鮈亚科 (Gobioninae)、鲃亚科 (Barbinae)、野鲮 亚科 (Labeoninae)、鳅蛇亚科 (Gobiobotinae)、 平鳍鳅科 (Homalopteridae)、鳅科 (Cobitidae) 和 鮡科 (Sisoridae)等适应急流生活的种类为主; 中下游湖泊众多,代表性鱼类为青鱼 (Mylopharyngodon piceus)、草鱼、鲢、鳙、鳡等江湖洄 游性种类^[10,51]。历史上,上游干流有鱼类9目 27科104属,中游干流有12目28科91属,中 上游干流鱼类群落的分类群组成具有明显差异。 依据本次野外调查的数据,分析中上游干流调 查采样江段的鱼类群落结构的相似性发现, 仅 中游干流调查采样点的部分群落之间为中等相 似(C_i>0.5)。依据调查采样点鱼类物种相对丰 度数据的 Cluster 聚类, 整体上聚为中上游 2 个 群组,其分歧种主要为中、上游干流不同生境 适应性物种,例如铜鱼主要栖息于上游干流底 层,银鲴和鲂等以中游干流生境为主。

鱼类群落系统发育β多样性可以量化群落 组成的变化幅度,反映了生境沿河流纵向梯度 发生的变化。结合文献资料和本次野外调查数 据,从B多样性层面剖析三峡大坝截流对鱼类 群落结构的影响。结果显示,群落所有物种和 土著种的 β 多样性 (β_{sar}) 均发生了明显的变化, 主要由群落嵌套 (β_{sne})所驱动,而周转指数 (β_{sim}) 变化微弱,表明中上游干流鱼类群落间物 种组成差异增大。群落嵌套和群落周转对群落 多样性空间变化的贡献大小,在一定程度上取 决于分类群属性。河流上游河段通常因海拔高、 气温低、水流急等因素制约,鱼类物种数量较 低,区系组成上与中下游河段区别明显。河流 沿海拔梯度的鱼类群落 β多样性空间变化的贡 献,主要取决于群落分类群的周转^[52]。长江上 游干流承接金沙江下游段,属干热河谷区,年 平均温度 19 ℃以上,形成了独具特色的水文 特征,为中华鲟、长江鲟、白鲟、胭脂鱼等珍 稀濒危物种最佳繁育场所,使长江上游干流记 载的鱼类物种数量明显多于中游干流^[52]。三峡 大坝隔离了长江中上游干流的通联,促使中上 游不同生境进一步断裂,群落间周转不明显, 缺乏物种相互替代。长江中上游干流鱼类群落 β多样性时空变化的潜在机制归因于群落周转, 表现为群落物种丢失和获得的消长,中游丢失 较多土著种(40 vs. 34),而上游获得较多入侵 种(10 vs. 5),这些均为人类干扰引起的生态问题。

群落系统发育β多样性分析发现,中上游 干流鱼类群落间所有物种系统发育 β多样性 (β_{sor phy}) 变化明显 (0.024), 以群落嵌套 (β_{sne phy}) 为主要贡献 (0.033), 群落周转 (β_{sim phy}) 变化微 弱 (-0.006); 而群落间土著种系统发育 β多样性 $(\beta_{\text{sor.phy}})$ 变化不明显, $\beta_{\text{sne.phy}}$ 和 $\beta_{\text{sim.phy}}$ 的贡献差 异不显著,表明外来入侵种的获得,导致群落 分类群单元的变化, 增加了群落间系统发育 β 多样性的差异值。长江干流水系入侵种类,如 食蚊鱼 (Gambusia affinis) [胎鳉科 (Poeciliidae)]、 大口黑鲈 (Micropterus salmoides) [太阳鱼科 (Centrarchidae)]、白梭吻鲈 (Sander lucioperca) [鲈科 (Percidae)], 莫桑比克罗非鱼 (Oreochromis mossambicus) [丽鱼科 (Cichlidae)]等, 在科 级水平上极大地增加群落分类群系统进化路径。 系统发育β多样性的群落周转减小,降低了群 落间共有物种的比例。外来物种在长江中上游 入侵的差异性,反映群落之间物种分类地位和 生态的差异。外来种入侵不是随机的,与生境 的适应性密切相关^[53]。由于三峡水库提供了水

库型生境,长江上游入侵鱼类集中分布于三峡 水库。此外,过河性水库改变了鱼类栖息生境, 四川白甲鱼 (Varicorhinus angustistomatus)、重 口裂腹鱼 (Schizothorax davidi)、川陕哲罗鲑 (Hucho bleekeri)等特有物种已从上游干流消失³³。 入侵种在争夺土著种食物和生存空间方面占据 优势地位,威胁土著种的生存^[54]。综上表明, 外来种入侵对长江干流鱼类群落系统发育多样 性已产生了显著影响。

感谢研究室的宋洁、宋鹏、王田、张雨阳、 郭俊祺、林子豪等参与部分样品的采集,常羽、 洪珍珍等参与部分样本测量。

参考文献 (References):

- [1] Cardinale B J, Duffy J E, Gonzalez A, et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 486(7401): 59-67.
- [2] Santos R M B, Sanches Fernandes L F, Cortes R M V, et al. Integrative assessment of river damming impacts on aquatic fauna in a Portuguese reservoir[J]. Science of the Total Environment, 2017, 601-602: 1108-1118.
- [3] 杨志,唐会元,龚云,等.正常运行条件下三峡库区干流长江 上游特有鱼类时空分布特征研究[J].三峡生态环境监测, 2017,2(1):1-10.

Yang Z, Tang H Y, Gong Y, *et al.* The spatial-temporal distribution characteristics of the endemic fish in the upper reaches of the Yangtze River under the normal operation of the Three Gorges Reservoir[J]. Ecology and Environmental Monitoring of Three Gorges, 2017, 2(1): 1-10 (in Chinese).

- [4] Wilcove D S, Rothstein D, Dubow J, et al. Quantifying threats to imperiled species in the United States: assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease[J]. BioScience, 1998, 48(8): 607-615.
- [5] Ding C Z, Jiang X M, Xie Z C, et al. Seventy-five years of biodiversity decline of fish assemblages in Chinese isolated plateau lakes: widespread introductions and extirpations of narrow endemics lead to regional loss of dissimilarity[J]. Diversity and Distributions, 2017, 23(1-2): 171-184.
- [6] 巴家文,陈大庆. 三峡库区的入侵鱼类及库区蓄水对外来鱼 类入侵的影响初探 [J]. 湖泊科学, 2012, 24(2): 185-189.
 Ba J W, Chen D Q. Invasive fishes in Three Gorges Reservoir area and preliminary study on effects of fish invasion owing to impoundment[J]. Journal of Lake Sciences, 2012, 24(2): 185-189 (in Chinese).
- [7] Liu C L, He D K, Chen Y F, et al. Species invasions threaten

the antiquity of China's freshwater fish fauna[J]. Diversity and Distributions, 2017, 23(5): 556-566.

- [8] Leprieur F, Albouy C, De Bortoli J, et al. Quantifying phylogenetic beta diversity: distinguishing between 'true' turnover of lineages and phylogenetic diversity gradients[J]. PLoS One, 2012, 7(8): e42760.
- [9] Heino J, Soininen J, Lappalainen J, et al. The relationship between species richness and taxonomic distinctness in freshwater organisms[J]. Limnology and Oceanography, 2005, 50(3): 978-986.
- [10] 曹文宣. 长江鱼类资源的现状与保护对策 [J]. 江西水产科技,
 2011(2): 1-4.
 Cao W X. Status and conservation of fish resources in the Yangtze River[J]. Jiangxi Fishery Sciences and Technology,
 2011(2): 1-4 (in Chinese).
- [11] 蒋志刚, 江建平, 王跃招, 等. 中国脊椎动物红色名录 [J]. 生物多样性, 2016, 24(5): 501-551.
 Jiang Z G, Jiang J P, Wang Y Z, *et al.* Red list of China's vertebrates[J]. Biodiversity Science, 2016, 24(5): 501-551 (in Chinese).
- [12] 国家林业和草原局,农业农村部.国家重点保护野生动物名录[J].野生动物学报,2021,42(2):605-640.

National Forestry and Grassland Administration, Ministry of Agriculture and Rural Affairs of the People's Republic of China. List of national key protected wild animals[J]. Chinese Journal of Wildlife, 2021, 42(2): 605-640 (in Chinese).

[13] 陈庆伟, 刘兰芬, 刘昌明. 筑坝对河流生态系统的影响及水库
 生态调度研究 [J]. 北京师范大学学报 (自然科学版), 2007,
 43(5): 578-582.

Chen Q W, Liu L F, Liu C M. Impacts of dam construction on ecosystem and dispatches of ecological water[J]. Journal of Beijing Normal University (Natural Science Edition), 2007, 43(5): 578-582 (in Chinese).

[14] 张觉民,何志辉.内陆水域渔业自然资源调查手册 [M].北京:农业出版社, 1991.

Zhang J M, He Z H. A manual for investigation of natural resources in inland waters[M]. Beijing: Agricultural Press, 1991 (in Chinese).

[15] 陈大庆. 长江渔业资源现状与增殖保护对策 [J]. 中国水产, 2003(3): 17-19.
Chen D Q. Current situation of fishery resources and countermeasure of enhancement and protection in the Yangtze River[J]. China Fisheries, 2003(3): 17-19 (in Chinese).

[16] 刘绍平, 段辛斌, 陈大庆, 等. 长江中游渔业资源现状研究 [J]. 水生生物学报, 2005, 29(6): 708-711.

Liu S P, Duan X B, Chen D Q, et al. Studies on status of fish-

中国水产学会主办 sponsored by China Society of Fisheries

王鑫洋,等

ery resources in the middle reach of the Yangtze River[J]. Acta Hydrobiologica Sinica, 2005, 29(6): 708-711 (in Chinese).

[17] 湖北省水生生物研究所鱼类研究室.长江鱼类 [M].北京:科 学出版社, 1976: 20-58.

> Fish Research Office, Hubei Provincial Institute of Hydrobiology. Fish of the Yangtze River [M]. Beijing: Science Press, 1976: 20-58 (in Chinese).

- [18] 陈大庆. 长江鱼类监测手册 [M]. 北京: 科学出版社, 2013.
 Chen D Q. The monitoring manual of Yangtze River fish[M].
 Beijing: Science Press, 2013 (in Chinese).
- [19] 危起伟.长江上游珍稀特有鱼类国家级自然保护区科学考察 报告 [M].北京:科出版社, 2012.

Wei Q W. Scientific investigation report on national nature reserve for the rare and endemic fishes in the upper reaches of the Yangtze River[M]. Beijing: Science Press, 2012 (in Chinese).

- [20] 于晓东, 罗天宏, 周红章. 长江流域鱼类物种多样性大尺度格局研究 [J]. 生物多样性, 2005, 13(6): 473-495.
 Yu X D, Luo T H, Zhou H Z. Large-scale patterns in species diversity of fishes in the Yangtze River Basin[J]. Biodiversity Science, 2005, 13(6): 473-495 (in Chinese).
- [21] 刘静. 近代中外长江流域鱼类资源调查记载的初步研究 [J].
 中华文化论坛, 2015(1): 138-144.
 Liu J. A preliminary study on the investigation records of fish

resources in the Yangtze River Basin at home and abroad in modern times[J]. Journal of Chinese Culture, 2015(1): 138-144 (in Chinese).

- [22] 张建云, 王国庆, 金君良, 等. 1956—2018 年中国江河径流演 变及其变化特征 [J]. 水科学进展, 2020, 31(2): 153-161.
 Zhang J Y, Wang G Q, Jin J L, *et al.* Evolution and variation characteristics of the recorded runoff for the major rivers in China during 1956-2018[J]. Advances in Water Science, 2020, 31(2): 153-161 (in Chinese).
- [23] 陈宜瑜. 中国动物志, 硬骨鱼纲: 鲤形目, 中卷 [M]. 北京: 科 学出版社, 1998.

Chen Y Y. Fauna Sinica (Osteichthyes): Cypriniformes II [M]. Beijing: Science Press, 1998 (in Chinese).

[24] 乐佩琦. 中国动物志 硬骨鱼纲 鲤形目 下卷 [M]. 北京: 科学 出版社, 2000.

Yue P Q. Fauna Sinica (Osteichthyes): Cypriniformes III[M]. Beijing: Science Press, 2000: (in Chinese).

- [25] 杨干荣. 湖北鱼类志 [M]. 武汉: 湖北科学技术出版社, 1987. Yang G R. Fishes of Hubei, China[M]. Wuhan: Hubei Science and Technology Press, 1987 (in Chinese).
- [26] 湖南省水产科学研究所. 湖南鱼类志 [M]. 长沙: 湖南人民出版社, 1977.

Hunan Fisheries Research Institute. The fishes of Hunan[M]. Changsha: Hunan People's Publishing House, 1977 (in Chinese).

- [27] 丁瑞华. 四川鱼类志 [M]. 成都: 四川科学技术出版社, 1994.
 Ding R H. The fishes of Sichuan, China[M]. Chengdu: Sichuan Science and Technology Press, 1994 (in Chinese).
- [28] Froese R, Pauly D. FishBase[EB/OL]. (2021-10-01)[2022-06-01]. http://www.fishbase.org.
- [29] Margalef R. Information theory in biology[J]. General Systems Yearbook, 1958, 3: 36-71.
- [30] Shannon C E. The mathematical theory of communication[J].M. D. Computing, 1997, 14(4): 306-317.
- [31] Pielou E C. The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology, 1966, 13: 131-144.
- [32] Simpson E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688.
- [33] 梁文明,张大伟,张元,等. 神头泉域鱼类群落结构及生物多样性分析 [J]. 水产学杂志, 2018, 31(6): 23-29.
 Liang W M, Zhang D W, Zhang Y, *et al.* Community structure and biodiversity analysis of fish in Shentou spring region[J].
 Chinese Journal of Fisheries, 2018, 31(6): 23-29 (in Chinese).
- [34] Anderson M J, Crist T O, Chase J M, et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist[J]. Ecology Letters, 2011, 14(1): 19-28.
- [35] Baselga A. Partitioning the turnover and nestedness components of beta diversity[J]. Global Ecology and Biogeography, 2010, 19(1): 134-143.
- [36] Koleff P, Gaston K J, Lennon J J. Measuring beta diversity for presence-absence data[J]. Journal of Animal Ecology, 2003, 72(3): 367-382.
- [37] 马克平, 刘灿然, 刘玉明. 生物群落多样性的测度方法 II β 多样性的测度方法 [J]. 生物多样性, 1995, 3(1): 38-43.
 Ma K P, Liu C R, Liu Y M. Method of diversity measurement for biological community: II β diversity measurement method[J]. Chinese Biodiversity, 1995, 3(1): 38-43 (in Chinese).
- [38] Clarke K R. Non-parametric multivariate analyses of changes in community structure[J]. Australian Journal of Ecology, 1993, 18(1): 117-143.
- [39] Zhang C, Ding L Y, Ding C Z, et al. Responses of species and phylogenetic diversity of fish communities in the Lancang River to hydropower development and exotic invasions[J]. Ecological Indicators, 2018, 90: 261-279.
- [40] Clarke K R, Warwick R M. A further biodiversity index applicable to species lists: variation in taxonomic distinctness[J]. Mar-

ine Ecology Progress Series, 2001, 216: 265-278.

- [41] Clarke K R, Warwick R M. Change in marine communities: an approach to statistical analysis and interpretation[M]. 2nd ed. Plymouth: PRIMER-E, 2001.
- [42] Clarke K R, Warwick R M. The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels[J]. Marine Ecology Progress Series, 1999, 184: 21-29.
- [43] Faith D P, Lozupone C A, Nipperess D, et al. The cladistic basis for the phylogenetic diversity (PD) measure links evolutionary features to environmental gradients and supports broad applications of microbial ecology's "phylogenetic beta diversity" framework[J]. International Journal of Molecular Sciences, 2009, 10(11): 4723-4741.
- [44] 邵严,唐文乔,龚珑,等.上海淀山湖及黄浦江上游鱼类物种
 多样性及群落结构分析 [J].长江流域资源与环境,2022,
 31(7):1482-1493.

Shao Y, Tang W Q, Gong L, *et al.* Analysis of fish species diversity and assemblage of Dianshan Lake and upper reaches of Huangpu River in Shanghai[J]. Resources and Environment in the Yangtze Basin, 2022, 31(7): 1482-1493 (in Chinese).

- [45] 张敏莹, 徐东坡, 刘凯, 等. 长江安庆江段鱼类调查及物种多样性初步研究[J]. 湖泊科学, 2006, 18(6): 670-676. Zhang M Y, Xu D P, Liu K, *et al.* Ichthyologic survey and primary studies on diversity of fishery species in Anqing section of the Yangtze River[J]. Journal of Lake Sciences, 2006, 18(6): 670-676 (in Chinese).
- [46] 高天珩,田辉伍,叶超,等.长江上游珍稀特有鱼类国家级自然保护区干流段鱼类组成及其多样性 [J].淡水渔业,2013, 43(2):36-42.

Gao T H, Tian H W, Ye C, *et al.* Diversity and composition of fish in the mainstream of national nature reserve of rare and endemic fish in the upper Yangtze River[J]. Freshwater Fisheries, 2013, 43(2): 36-42 (in Chinese).

[47] 邹曦,杨志,郑志伟,等.长江干流典型区域河流生境健康评价[J].长江流域资源与环境,2020,29(10): 2219-2228.

Zou X, Yang Z, Zheng Z W, *et al.* Health assessment of river habitat in typical regions of the Yangtze River mainstream[J]. Resources and Environment in the Yangtze Basin, 2020, 29(10): 2219-2228 (in Chinese).

- [48] 李建川, 土艳丽, 林进, 等. 放生对拉萨河流域鱼类物种多样 性和群落结构的影响 [J]. 高原农业, 2018, 2(5): 462-469.
 Li J C, Tu Y L, Lin J, *et al.* Influence of religious release on fish assemblages in the Lhasa River Basin, Xizang, China[J]. Journal of Plateau Agriculture, 2018, 2(5): 462-469 (in Chinese).
- [49] 唐琼英,黎明政."休渔十年"何时实现——长江鱼类多样性及长江渔业[J]. 大自然, 2014(2): 8-11.
 Tang Q Y, Li M Z. Fish biodiversity and fisheries in the Yangtze River[J]. China Nature, 2014(2): 8-11 (in Chinese).
- [50] Milošević D, Simić V, Stojković M, et al. Chironomid faunal composition represented by taxonomic distinctness index reveals environmental change in a lotic system over three decades[J]. Hydrobiologia, 2012, 683(1): 69-82.
- [51] 刘飞,林鹏程,黎明政,等. 长江流域鱼类资源现状与保护对策[J]. 水生生物学报, 2019, 43(S1): 144-156.
 Liu F, Lin P C, Li M Z, *et al.* Situations and conservation strategies of fish resources in the Yangtze River basin[J]. Acta Hydrobiologica Sinica, 2019, 43(S1): 144-156 (in Chinese).
- [52] 张东,宛凤英,储玲,等.青弋江鱼类分类群和功能群的 α 和 β 多样性纵向梯度格局 [J]. 生物多样性, 2018, 26(1): 1-13. Zhang D, Wan F Y, Chu L, *et al.* Longitudinal patterns in α and β diversity of the taxonomic and functional organizations of stream fish assemblages in the Qingyi River[J]. Biodiversity Science, 2018, 26(1): 1-13 (in Chinese).
- [53] Winter M, Schweiger O, Klotz S, et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21721-21725.
- [54] Kolar C S, Lodge D M. Ecological predictions and risk assessment for alien fishes in North America[J]. Science, 2002, 298(5596): 1233-1236.

Species diversity of fishes in the middle and upper reaches of the Yangtze River and impact of exotic invasions on fish communities

WANG Xinyang ^{1,2}, XIA Cong ^{1,2}, DAI Fengbin ³, ZHANG Yuanyuan ⁴, TANG Wenqiao ^{1,2}, LIU Dong ^{1,2*}

1. Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China;

2. Key Laboratory of Intergrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs,

Shanghai Ocean University, Shanghai 201306, China;

3. State Environment Protection Key Laboratory of Regional Eco-process and Function Assessment,

Chinese Research Academy of Environmental Sciences, Beijing 100012, China;

4. Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China

Abstract: Fish species diversity is rich across the Yangtze River basin, but fishery catches are rapidly increasing in the past decades, and declining fish biodiversity poses risks for fishes resources. However, the degree of reduction in fish diversity and the change-drove factors of fish communities in the Yangtze River are still unknown. The data from the investigation and the retrieved literature were analysed the diversity and structure of the fish community to explore the driving factors of fish diversity change and measure the change degree of fish diversity in the Yangtze River. Meanwhile, compared α and β diversity changes of fish communities at species and phylogeny levels during historical and current periods were analyzed. The results showed that 174 species, belonging to 92 genus, 22 families, and 9 orders were found in the main channel of the Yangtze River to date. Compared to the historical period, 47 native species and 27 endemic species decreased, but 11 invasive species increased in the current period. The diversity of fish community in the upper stream was significantly higher than that of the middle (P<0.05), and 43 species contributed to the diversity rates of community construction. All species and native species showed that the average taxonomic distinctness increased from history to the current at the α level, but the taxonomic distinct diversity decreased, and the loss of native species resulted in a decrease in community diversity. The β_{sor} values of the upper and middle communities showed significant changes at the β level, which was driven by β_{sne} . The $\beta_{sne,phy}$ that changed from 0.054 to 0.085 mainly contributed to the changes of $\beta_{\text{sor,phy}}$ between the upper and middle communities from 0.290 to 0.314 at the phylogenetic β level. The $\beta_{\text{sor,phy}}$ for the native species did not change significantly, and the acquisition of exotic invasive species gave rise to changes in community taxonomic units, further resulting in significant changes between communities at the phylogenetic β level. By comparing the changes in fish diversity between historical and current periods, it suggested that the loss of indigenous species and the invasion of alien species had changed the spatial and temporal patterns of fish communities and significantly affected the phylogenetic diversity of fish communities, which was expected to provide theoretical support for ecological restoration in the Yangtze River.

Key words: fish; community structure; biology diversity; invasive species; the Yangtze River

Corresponding author: LIU Dong. E-mail: dliu@shou.edu.cn

Funding projects: Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (2019HJ2096001006)