Fish species diversity in the Zhongjieshan Islands based on environmental DNA metabarcoding
CSTR:
Author:
Clc Number:

S 931

  • Article
  • | |
  • Metrics
  • |
  • Reference [63]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Rocky reef habitats are critical for supporting exceptionally high fish species diversity, a vital element of biodiversity. However, monitoring fish species in these habitats using traditional fisheries resource survey methods poses significant challenges. Therefore, there is an urgent need to develop sensitive and efficient methods for biodiversity monitoring. Four sampling stations were strategically selected around the Miaozihu Islands within the Zhongjieshan archipelago, and surface seawater samples were collected across four seasons (February, May, August and November in 2019). The spatial and temporal distribution of fish was analyzed using environmental DNA metabarcoding technology. The findings revealed a total of 37 fish species across 10 orders 26 families 36 genera. The seasonal abundance of fish species followed a trend of summer >winter > autumn > spring. Remarkably, only 2 fish species were observed in all four seasons, representing approximately 5.41% of the total species count, while 54.05% of the species were detected in a single season only. The non-metric multidimensional scaling (NMDS) analysis and the analysis of similarities (ANOSIM) test indicated significant variation in fish composition among seasons (P<0.05), but not among stations. The fish community's uniformity remained relatively stable. Although the diversity and richness indices did not exhibit significant differences among stations, they peaked in summer and troughed in spring. Overall, the distribution of fish in the coastal waters of the Zhongjieshan Islands is significantly influenced by the seasonal changes rether than station locations. This study introduces an innovative, environmentally friendly approach to fish diversity assessment in marine environments akin to those of the Zhoushan islands and reefs, offering valuable technical insights for the management and conservation of fisheries resources.

    Reference
    [1] Oliver T H, Heard M S, Isaac N J B, et al. Biodiversity and resilience of ecosystem functions[J]. Trends in Ecology & Evolution, 2015, 30(11): 673-684
    [2] Zou K S, Chen J W, Ruan H T, et al. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling[J]. Science of the Total Environment, 2020, 702: 134704
    [3] 李晓玲, 刘洋, 王丛丛, 等. 基于环境DNA技术的夏季东海鱼类物种多样性研究[J]. 海洋学报, 2022, 44(4): 74-84
    Li X L, Liu Y, Wang C C, et al. Study on fish species diversity in the East China Sea in summer based on environmental DNA technology[J]. Acta Oceanologica Sinica, 2022, 44(4): 74-84 (in Chinese)
    [4] 于南京, 俞存根, 许永久, 等. 舟山群岛外海域春秋季鱼类群落结构及生物多样性[J]. 水产学报, 2021, 45(8): 1374-1383
    Yu N J, Yu C G, Xu Y J, et al. Fish community structure and biodiversity in the offshore waters of Zhoushan Islands in spring and autumn[J]. Journal of Fisheries of China, 2021, 45(8): 1374-1383 (in Chinese)
    [5] 梁君, 徐汉祥, 王伟定. 中街山列岛海洋保护区鱼类物种多样性[J]. 生态学报, 2013, 33(18): 5905-5916
    Liang J, Xu H X, Wang W D. Fish species diversity in Zhongjieshan Islands marine protected area (MPA)[J]. Acta Ecologica Sinica, 2013, 33(18): 5905-5916 (in Chinese)
    [6] 徐开达, 张洪亮, 谢汉阳, 等. 中街山列岛水域甲壳类资源及其群落多样性[J]. 海洋渔业, 2012, 34(3): 308-315
    Xu K D, Zhang H L, Xie H Y, et al. Resource density and community diversity of crustaceans in the waters of Zhongjieshan Islands[J]. Marine Fisheries, 2012, 34(3): 308-315 (in Chinese)
    [7] 张龙, 徐开达, 张洪亮, 等. 中街山海域渔业动物群落结构的季节变化[J]. 浙江海洋学院学报(自然科学版), 2012, 31(4): 290-294
    Zhang L, Xu K D, Zhang H L, et al. Seasonal variety of fishery biology community structure in Zhongjieshan Sea[J]. Journal of Zhejiang Ocean University (Natural Science), 2012, 31(4): 290-294 (in Chinese)
    [8] 刘坤, 俞存根, 郑基, 等. 舟山群岛东侧海域春秋季主要鱼类空间生态位及其分化[J]. 中国水产科学, 2021, 28(1): 100-111
    Liu K, Yu C G, Zheng J, et al. The spatial niche and differentiation of major fish species in the waters east of the Zhoushan Islands in spring and autumn[J]. Journal of Fishery Sciences of China, 2021, 28(1): 100-111 (in Chinese)
    [9] Xu Y, Ma L, Sun Y, et al. Spatial variation of demersal fish diversity and distribution in the East China Sea: impact of the bottom branches of the Kuroshio Current[J]. Journal of Sea Research, 2019, 144: 22-32
    [10] 汪洋, 吴常文. 中街山列岛岩礁海域鱼类群落多样性研究[J]. 海洋与湖沼, 2015, 46(4): 776-785
    Wang Y, Wu C W. Fish community diversities in reef waters of Zhongjieshan islands[J]. Oceanologia et Limnologia Sinica, 2015, 46(4): 776-785 (in Chinese)
    [11] 陈炼, 吴琳, 刘燕, 等. 环境DNA metabarcoding及其在生态学研究中的应用[J]. 生态学报, 2016, 36(15): 4573-4582
    Chen L, Wu L, Liu Y, et al. Application of environmental DNA metabarcoding in ecology[J]. Acta Ecologica Sinica, 2016, 36(15): 4573-4582 (in Chinese)
    [12] Lodge D M, Turner C R, Jerde C L, et al. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA[J]. Molecular Ecology, 2012, 21(11): 2555-2558
    [13] Seymour M, Durance I, Cosby B J, et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms[J]. Communications Biology, 2018, 1: 4
    [14] 高天翔, 陈治, 王晓艳. 近海鱼类多样性调查新方法—环境DNA分析技术[J]. 浙江海洋学院学报(自然科学版), 2018, 37(1): 1-7
    Gao T X, Chen Z, Wang X Y. Environmental DNA, a new method for fish diversity investigation in the coastal waters[J]. Journal of Zhejiang Ocean University (Natural Science), 2018, 37(1): 1-7 (in Chinese)
    [15] Thomsen P F, Kielgast J, Iversen L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA[J]. Molecular Ecology, 2012, 21(11): 2565-2573
    [16] Pilliod D S, Goldberg C S, Arkle R S, et al. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(8): 1123-1130
    [17] Thomsen P F, Kielgast J, Iversen L L, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples[J]. PLoS One, 2012, 7(8): e41732
    [18] Kelly R P, Port J A, Yamahara K M, et al. Using environmental DNA to census marine fishes in a large mesocosm[J]. PLoS One, 2014, 9(1): e86175
    [19] Seymour M, Edwards F K, Cosby B J, et al. Executing multi-taxa eDNA ecological assessment via traditional metrics and interactive networks[J]. Science of the Total Environment, 2020, 729: 138801
    [20] Dejean T, Valentini A, Miquel C, et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus[J]. Journal of Applied Ecology, 2012, 49(4): 953-959
    [21] Kelly R P, Port J A, Yamahara K M, et al. Harnessing DNA to improve environmental management[J]. Science, 2014, 344(6191): 1455-1456
    [22] Wang X Y, Zhang H B, Lu G Q, et al. Detection of an invasive species through an environmental DNA approach: the example of the red drum Sciaenops ocellatus in the East China Sea[J]. Science of the Total Environment, 2022, 815: 152865
    [23] Miya M, Sato Y, Fukunaga T, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species[J]. Royal Society Open Science, 2015, 2(7): 150088
    [24] Wu Q Q, Sakata M K, Wu D Y, et al. Application of environmental DNA metabarcoding in a lake with extensive algal blooms[J]. Limnology, 2021, 22(3): 363-370
    [25] Bylemans J, Furlan E M, Hardy C M, et al. An environmental DNA-based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica)[J]. Methods in Ecology and Evolution, 2017, 8(5): 646-655
    [26] Rey A, Carney K J, Quinones L E, et al. Environmental DNA metabarcoding: a promising tool for ballast water monitoring[J]. Environmental Science & Technology, 2019, 53(20): 11849-11859
    [27] Zhou S, Fan C R, Xia H M, et al. Combined use of eDNA metabarcoding and bottom trawling for the assessment of fish biodiversity in the Zhoushan Sea[J]. Frontiers in Marine Science, 2022, 8: 809703
    [28] 赵淑江, 吕宝强, 李汝伟, 等. 物种灭绝背景下东海渔业资源衰退原因分析[J]. 中国科学:地球科学, 2016, 59(2): 223-235
    Zhao S J, Lü B Q, Li R W, et al. A preliminary analysis of fishery resource exhaustion in the context of biodiversity decline[J]. Science China:Earth Sciences, 2016, 59(2): 223-235 (in Chinese)
    [29] Liang J, Wang W D, Xu H X, et al. Diel and seasonal variation in fish communities in the Zhongjieshan marine island reef reserve[J]. Fisheries Research, 2020, 227: 105549
    [30] Balasingham K D, Walter R P, Mandrak N E, et al. Environmental DNA detection of rare and invasive fish species in two Great Lakes tributaries[J]. Molecular Ecology, 2018, 27(1): 112-127
    [31] Ficetola G F, Miaud C, Pompanon F, et al. Species detection using environmental DNA from water samples[J]. Biology Letters, 2008, 4(4): 423-425
    [32] 梁君, 王伟定, 虞宝存, 等. 中街山列岛海洋保护区岛礁生境鱼类资源及群落多样性季节变化[J]. 海洋与湖沼, 2014, 45(5): 979-989
    Liang J, Wang W D, Yu B C, et al. Seasonal variations of fish resources and community diversity of reef habitat in marine protected area of Zhongjieshan Islands[J]. Oceanologia et Limnologia Sinica, 2014, 45(5): 979-989 (in Chinese)
    [33] 陆延, 牛威震, 程爱勇, 等. 舟山岛北部海域鱼类群落结构及其生物多样性[J]. 大连海洋大学学报, 37(6): 1022-1031.
    Lu Y, Niu W Z, Cheng A Y, et al. Fish community structure and biodiversity in the northern sea area of Zhoushan island[J]. Journal of Dalian Ocean University, 37(6): 1022-1031. (in Chinese)
    [34] Deiner K, Altermatt F. Transport distance of invertebrate environmental DNA in a natural river[J]. PLoS One, 2014, 9(2): e88786
    [35] Faber K L, Person E C, Hudlow W R. PCR inhibitor removal using the NucleoSpin® DNA Clean-Up XS kit[J]. Forensic Science International:Genetics, 2013, 7(1): 209-213
    [36] Herrera A, Cockell C S. Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction[J]. Journal of Microbiological Methods, 2007, 70(1): 1-12
    [37] Rodríguez-Mejía J L, Martínez-Anaya C, Folch-Mallol J L, et al. A two-step electrodialysis method for DNA purification from polluted metallic environmental samples[J]. Electrophoresis, 2008, 29(15): 3239-3244
    [38] Deiner K, Walser J C, Mächler E, et al. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA[J]. Biological Conservation, 2015, 183: 53-63
    [39] 俞存根, 陈全震, 陈小庆, 等. 舟山渔场及邻近海域鱼类种类组成和数量分布[J]. 海洋与湖沼, 2010, 41(3): 410-417
    Yu C G, Chen Q Z, Chen X Q, et al. Species composition and quantitative distribution of fish in the Zhoushan Fishing Ground and its adjacent waters[J]. Oceanologia et Limnologia Sinica, 2010, 41(3): 410-417 (in Chinese)
    [40] 汪振华, 章守宇, 陈清满, 等. 马鞍列岛岩礁生境鱼类群落生态学. Ⅰ. 种类组成和多样性[J]. 生物多样性, 2012, 20(1): 41-50
    Wang Z H, Zhang S Y, Chen Q M, et al. Fish community ecology in rocky reef habitat of Ma’an Archipelago. I. Species composition and diversity[J]. Biodiversity Science, 2012, 20(1): 41-50 (in Chinese)
    [41] Closek C J, Santora J A, Starks H A, et al. Marine vertebrate biodiversity and distribution within the central California current using environmental DNA (eDNA) metabarcoding and ecosystem surveys[J]. Frontiers in Marine Science, 2019, 6: 732
    [42] Jerde C L, Mahon A R, Chadderton W L, et al. “Sight-unseen” detection of rare aquatic species using environmental DNA[J]. Conservation Letters, 2011, 4(2): 150-157
    [43] Song J W, Small M J, Casman E A. Making sense of the noise: the effect of hydrology on silver carp eDNA detection in the Chicago area waterway system[J]. Science of the Total Environment, 2017, 605-606: 713-720
    [44] Bohmann K, Evans A, Gilbert M T P, et al. Environmental DNA for wildlife biology and biodiversity monitoring[J]. Trends in Ecology & Evolution, 2014, 29(6): 358-367
    [45] Jo T, Murakami H, Yamamoto S, et al. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution[J]. Ecology and Evolution, 2019, 9(3): 1135-1146
    [46] Collins R A, Wangensteen O S, O’Gorman E J, et al. Persistence of environmental DNA in marine systems[J]. Communications Biology, 2018, 1: 185
    [47] Duarte S, Vieira P E, Lavrador A S, et al. Status and prospects of marine NIS detection and monitoring through (e)DNA metabarcoding[J]. Science of the Total Environment, 2021, 751: 141729
    [48] Sansom B J, Sassoubre L M. Environmental DNA (eDNA) shedding and decay rates to model freshwater mussel eDNA transport in a river[J]. Environmental Science & Technology, 2017, 51(24): 14244-14253
    [49] Jones D T, Wilson C D, De Robertis A, et al. Evaluation of rockfish abundance in untrawlable habitat: combining acoustic and complementary sampling tools[J]. Fishery Bulletin, 2012, 110(3): 332-343
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHONG Lanping, GAO Tianxiang, ZHANG Haobo, CHEN Zhi, WANG Xiaoyan. Fish species diversity in the Zhongjieshan Islands based on environmental DNA metabarcoding[J]. Journal of Fisheries of China,2024,48(9):099310

Copy
Share
Article Metrics
  • Abstract:160
  • PDF: 3103
  • HTML: 0
  • Cited by: 0
History
  • Received:June 06,2022
  • Revised:October 22,2022
  • Online: September 05,2024
Article QR Code