Effects of different light-qualities on growth and physiological characteristics of free living conchocelis of Pyropia haitanensis
CSTR:
Author:
Affiliation:

CollegeSofSLifeSandSFisheries,Shanghai Ocean University,Fisheries Research Institute of Fujian Province,College of Life and Fisheries, Shanghai Ocean University,College of Life and Fisheries, Shanghai Ocean University,Fisheries Research Institute of Fujian Province

Clc Number:

S968.43

  • Article
  • | |
  • Metrics
  • |
  • Reference [61]
  • |
  • Related [20]
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    The influences of different light qualities (green 510-550 nm, blue 455-475 nm, red 580-630 nm, white 400-760 nm) from light-emiting diode (LED) illuminations on the growth and physiological characteristics of wild free-living conchocelis of Pyropia haitanensis were studied. Results showed that blue light (BL) significantly promoted the growth rate of conchocelis in the cultures. The weight increments of conchocelis under BL were 1.10, 1.82, 2.17 times higher than those of other conchocelis cultured under white light (WL), green light (GL) and red light (RL), respectively. BL stimulated the synthesis of chlorophyll a and carotenoids. Compared to WL, GL and RL, the contents of chlorophyll a in BL were increased by 13.77%, 47.69%, 63.42%, respectively, and the contents of carotenoids in BL were increased by 8.87%, 87.07%, 97.73%, respectively. BL and WL were conducive to synthesize phycoerythrin rather than GL and RL. However, there were no significant differences of phycocyanin contents between the conchocelis in the cultures under different LED light qualities. Moreover, BL resulted in the highest activity of carbonic anhydrase, which enhanced by 11.36% than those of WL. Compared to WL, both BL and GL significantly stimulated the activity of ribulose bisphosphate carboxylase, which enhanced 28.17% and 61.21%, respectively. In the late growth stage, the conchocelis cultured under RL and GL were discolored and short of satellite chromatophore, even parts of them overflowed their cell inclusions and were hollowed. Whereas, conchocelis under BL and WL were normal, healthy and bright red. Therefore, we could add suitable component of blue-light, and decrease red-light and green-light in the asexual propagation of free-living conchocelis in P. haitanensis.

    Reference
    [1] 福建省水产局. 坛紫菜人工养殖[M]. 福州: 福建人民出版社, 1979: 1-101.
    Fisheries Bureau of Fujian Province. Artificial culture of Porphyra haitanensis[M]. Fuzhou: Fujian People’s Publishing House, 1979: 1-101(in Chinese).
    [2] 曾呈奎, 王素娟, 刘思俭, 等. 海藻栽培学[M]. 上海: 上海科学技术出版社, 1985: 55-121.
    Tseng C K, Wang S J, Liu S J, et al. Cultivation of Seaweed[M]. Shanghai: Shanghai Science and Technology Press, 1985: 55-121(in Chinese).
    [3] 汤晓荣, 费修绠. 光温与坛紫菜自由丝状体生长发育的关系[J]. 海洋与湖沼, 1997, 28(5): 475-482.
    Tang X R, Fei X G. Relationship between light, temperature and growth, development of conchocelis of Porphyra haitanensis[J]. Oceanologia et Limnologia Sinica, 1997, 28(5): 475-482(in Chinese).
    [4] 林汝榕, 刑炳鹏, 柯秀蓉, 等. 坛紫菜(Porphyra haitanLin R R, Xing B P, Ke X R, et al. Study on optimal growth conditions for conchocelis culture of Porphyra haitanensis[J]. Journal of Applied Oceanography, 2014, 33(2): 275-283(in Chinese).sis)丝状藻体生长增殖的优化调控培养条件研究[J]. 应用海洋学学报, 2014, 33(2): 275-283.
    Lin R R, Xing B P, Ke X R, et al. Study on optimal growth conditions for conchocelis culture of Porphyra haitanensis[J]. Journal of Applied Oceanography, 2014, 33(2): 275-283(in Chinese).
    [5] 陈国宜. 关于坛紫菜自由丝状体的培养和直接采苗的研究[J]. 水产学报, 1980, 4(1): 19-29.
    Chen G Y. A study on the culture of free-living filaments and direct spore-collecting of Porphyra haitanensis[J]. Journal of Fisheries of China, 1980, 4(1): 19-29(in Chinese).
    [6] 孙霂清, 李琳, 刘长军, 等. 坛紫菜自由丝状体移植育苗的初步研究[J]. 上海海洋大学学报, 2012, 21(5): 709-714.
    Sun M Q, Li L, Liu C J, et al. Study on conchocelis seeding with transplanting free-living conchocelis in Porphyra haitanensis (Bangiales, Rhodophyta)[J]. Journal of Shanghai Ocean University, 2012, 21(5): 709-714(in Chinese).
    [7] 郑洁, 胡美君, 郭延平. 光质对植物光合作用的调控及其机理[J]. 应用生态学报, 2008, 19(7): 1619-1624.
    Zheng J, Hu M J, Guo Y P. Regulation of photosynthesis by light quality and its mec hanism in plants[J]. Chinese Journal of Applied Ecology, 2008, 19(7): 1619-1624(in C hinese).
    [8] Figueroa F L, Aguilera J, Niell F X. Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta)[J]. European Journal of Phycology, 1995, 30(1): 11-18.
    [9] Tsekos I, Niell F X, Aguilera J, et al. Ultrastructure of the vegetative gametophytic cells of Porphyra leucosticta (Rhodophyta) grown in red, blue and green light[J]. Phycological Research, 2002, 50(4): 251-264.
    [10] Wang W J, Sun X T, Wang F J. Effect of blue light on early sporophyte development of Saccharina japonica (Phaeophyta)[J]. Marine Biology, 2010, 157(8): 1811-1817.
    [11] Wang W J, Sun X T, Wang G C, et al. Effect of blue light on indoor seedling culture of Saccharina japonica (Phaeophyta)[J]. Journal of Applied Phycology, 2010, 22(6): 737-744.
    [12] Zhang X, Li D P, Hu H H, et al. Growth promotion of vegetative gametophytes of Undaria pinnatifida by blue light[J]. Biotechnology Letters, 2005, 27(19): 1467-1475.
    [13] Kuwano K, Abe N, Nishi Y, et al. Growth and cell cycle of Ulva compressa (Ulvophyceae) under LED illumination[J]. Journal of Phycology, 2014, 50(4): 744-752.
    [14] López-Figueroa F, Niell F X. Effects of light quality on chlorophyll and biliprotein accumulation in seaweeds[J]. Marine Biology, 1990, 104(2): 321-327.
    [15] Godínez-Ortega G L, Snoeijis P, Robledo D, et al. Growth and pigment composition in the red alga Halymenia floresii cultured under different light qualities[J]. Journal of Applied Phycology, 2008, 20(3): 253-260.
    [16] Jayasankar R, Kulandaivelu G. Influence of different wavelengths of light on photosy nthesis and pigment constituents and absorption spectra of Gracilaria spp.[J]. Journal of Aquaculture in the Tropics, 2001, 16(4): 359-371.
    [17] Nguyen P T, Ruangchuay R, Lueangthuwapranit C. Effect of shading colours on growth and pigment content of Gracilaria fisheri (Xia & Abbott) Abbott, Zhang & Xia (Gracilariales, Rhodophyta)[J]. Aquaculture Research, 2016, doi: 10.1111/are.12954. [DOI:10.1111/are.12954]
    [18] 曹刚, 张国斌, 郁继华, 等. 不同光质LED光源对黄瓜苗期生长及叶绿素荧光参数的影响[J]. 中国农业科学, 2013, 46(6): 1297-1304.
    Cao G, Zhang G B, Yu J H, et al. Effects of different LED light qualities on cucumber seedling growth and chlorophyll fluorescence parameters[J]. Scientia Agricultura Sinica, 2013, 46(6): 1297-1304(in Chinese).
    [19] 王素娟, 张小平, 徐志东, 等. 坛紫菜营养细胞和原生质体培养的研究Ⅰ[J]. 海洋与湖沼, 1986, 17(3): 217-221.
    Wang S J, Zhang X P, Xu Z D, et al. A study on the cultivation of the vegetative cells and protoplasts of Pyropia haitanensis I.[J]. Oceanologia et Limnologia Sinica, 1986, 17(3): 217-221(in Chinese).
    [20] Porra R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b[J]. Photosynthesis Research, 2002, 73(1): 149-156.
    [21] Parsons T R, Strickland J D H. Discussion of spectrophotometric determination of marine-plant pigments, with revised equations for ascertaining chlorophylls and carotenoids[J]. Journal of Marine Research, 1963, 21(3): 155-163.
    [22] Beer S, Eshel A. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae[J]. Marine & Freshwater Research, 1985, 36(6): 785-792.
    [23] Haglund K, Björk M, Ramazanov Z, et al. Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata[J]. Planta, 1992, 187(2): 275-281.
    [24] Sulpice R, Tschoep H, von Korff M, et al. Description and applications of a rapid a nd sensitive non-radioactive microplate-based assay for maximum and initial activity of D-ribulose-1, 5-bisphosphate carboxylase/oxygenase [J]. Plant, Cell & Environment, 27, 30(9): 1163-1175.
    [25] 沈银武, 朱运芝, 刘永定. 不同光质对中华植生藻的影响[J]. 水生生物学报, 1999, 23(3): 285-287.
    Shen Y W, Zhu Y Z, Liu Y D. Effects of different light quality on Richelia sinica[J]. Acta Hydrobiologica Sinica, 1999, 23(3): 285-287(in Chinese).
    [26] Mouget J L, Rosa P, Tremblin G. Acclimation of Haslea ostrearia to light of different spectral qualities-confirmation of `chromatic adaptation' in diatoms[J]. Journal of Photochemistry and Photobiology B: Biology, 2004, 75(1-2): 1-11.
    [27] 苗洪利, 孙丽娜, 田庆震, 等. LED单色光谱及复合光谱对赤潮优势种中肋骨条藻生长的作用[J]. 中国海洋大学学报(自然科学版), 2011, 41(10): 107-110.
    Miao H L, Sun L N, Tian Q Z, et al. Effects of mochromatic and cmbination spectr a of LED on the gowth of the Skeletonema costatum in red tide[J]. Periodical of Ocean University of China, 2011, 41(10): 107-110(in Chinese).
    [28] Gabriel C R J, Del Pilar Sánchez-Saavedra M, Siqueiros-Beltrones D, et al. Isolation and growth of eight strains of benthic diatoms, cultured under two light conditions[J]. Journal of Shellfish Research, 2001, 20(2): 603-610.
    [29] Münzner P, Voigt J. Blue light regulation of cell division in Chlamydomonas reinhardtii[J]. Plant Physiology, 1992, 99(4): 1370-1375.
    [30] Ju Q, Xiao H, Wang Y, et al. Effects of UV-B radiation on tetraspores of Chondrus ocellatus Holm (Rhodophyta), and effects of red and blue light on repair of UV-B-induced damage[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(3): 650-663.
    [31] López-Figueroa F. Diurnal variation in pigment content in Porphyra laciniata and Chondrus crispus and its relation to the diurnal changes of underwater light quality and quantity[J]. Marine Ecology, 1992, 13(4): 285-305.
    [32] Rüdiger W, López-Figueroa F. Photoreceptors in algae[J]. Photochemistry and Photobiology, 1992, 55(6): 949-954.
    [33] 李映霞. 三种红藻光合作用色素系统的比较研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2007.
    Li Y X. Comparative study of pigmentary system of photosynthesis on three red alga e[D]. Qingdao: Graduate University of Chinese Academy of Sciences (Marine Research Institute), 2007(in Chinese).
    [34] Kato M, Aruga Y. Comparative studies on the growth and photosynthesis of the pigmentation mutants of Porphyra yezoensis in laboratory culture[J]. Japan Journal of Phycology, 1984, 32: 333-347.
    [35] Sánchez-Saavedra M P, Voltolina D. Effect of photon fluence rates of white and blue-green light on growth efficiency and pigment content of three diatom species in batch cultures[J]. Ciencias Marinas, 2002, 28(3): 273-279.
    [36] Steinbrenner J, Linden H. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control[J]. Plant Molecular Biology, 2003, 52(2): 343-356.
    [37] 王伟. 光质对中华盒形藻生长及生化组成的影响[J]. 武汉植物学研究, 1999, 17(3): 197-200.
    Wang W. Effect of light quality on growth and biochemical compositions of a diatom Biddulphia sinensis[J]. Journal of Wuhan Botanical Research, 1999, 17(3): 197-200(in Chinese).
    [38] Carmona R, Vergara J J, Pérez-Lloréns J L, et al. Photosynthetic acclimation and biochemical responses of Gelidium sesquipedale cultured in chemostats under different qualities of light[J]. Marine Biology, 1996, 127(1): 25-34.
    [39] Korbee N, Figueroa F L, Aguilera J. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta)[J]. Journal of Photochemistry and Photobiology B: Biology, 2005, 80(2): 71-78.
    [40] Satoh H, Fork D C. A new mechanism for adaptation to changes in light intensity and quality in the red alga, Porphyra perforata Ⅱ. Characteristics of state Ⅱ-state Ⅲ transitions[J]. Photosynthesis Research, 1983, 4(1): 61-70.
    [41] 曾晓鹏, 夏建荣. 光强对两种硅藻光合作用、碳酸酐酶和RubisCO活性的影响[J]. 水生生物学报, 2015, 39(2): 368-374.
    Zeng X P, Xia J R. Effects of light intensities on photosynthesis, carbonic anhydrase and Rubisco activity in two diatoms[J]. Acta Hydrobiologica Sinica, 2015, 39(2): 368-374(in Chinese).
    [42] Badger M R, Price G D. The role of carbonic anhydrase in photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2003, 45(1): 369-392.
    [43] Kianianmomeni A. Cell-type specific light-mediated transcript regulation in the multicellular alga Volvox carteri[J]. BMC Genomics, 2014, 15(1):1-14.
    [44] Dionisio-Sese M L, Fukuzawa H, Miyachi S. Light-Induced carbonic anhydrase expression in Chlamydomonas reinhardtii[J]. Plant Physiology, 1990, 94(3): 1103-1110.
    [45] Eskins K, Jiang C Z, Shibles R. Light-quality and irradiance effects on pigments, light-harvesting proteins and Rubisco activity in a chlorophyll-and light-harvesting-deficient soybean mutant[J]. Physiologia Plantarum, 1991, 83(1): 47-53.
    [46] 乔醒. 水稻功能叶碳酸酐酶活性及其转录调控[D]. 武汉: 华中农业大学, 2013.
    Qiao X. Carbon anhydrase activity and its transcriptional regulation in the functional leaves of rice (Oryza sativa L.)[D]. Wuhan: Huazhong Agricultural University, 2013(in Chinese).
    Comments
    Comments
    分享到微博
    Submit
Get Citation

HAN Junjun, ZHONG Chenhui, HE Peimin, YU Kefeng, LIN Qi. Effects of different light-qualities on growth and physiological characteristics of free living conchocelis of Pyropia haitanensis[J]. Journal of Fisheries of China,2017,41(2):230~239

Copy
Share
Article Metrics
  • Abstract:2181
  • PDF: 2632
  • HTML: 1261
  • Cited by: 0
History
  • Received:June 12,2016
  • Revised:September 26,2016
  • Adopted:November 15,2016
  • Online: February 22,2017
Article QR Code