水产学报  2019, Vol. 43 Issue (1): 168-187    DOI: 10.11964/jfc.20181011472.   PDF    
中国水产动物病毒学研究概述
桂朗1 , 张奇亚1,2,3     
1. 上海海洋大学,水产科学国家级实验教学示范中心,中国科学技术部海洋生物科学国际联合研究中心,水产种质资源发掘与利用教育部重点实验室,上海    201306;
2. 中国科学院水生生物学研究所,淡水生态与生物技术国家重点实验室,湖北 武汉    430072;
3. 农业农村部养殖病害防治重点实验室,湖北 武汉    430072
摘要:本研究简要概述了过去几十年来中国水产养殖动物病毒学的代表性研究成果,主要涉及鱼类病毒、虾类病毒、两栖和爬行动物病毒等。此外,本研究还展望了水产动物病毒学研究的发展趋势,以有助于加深对中国水产养殖动物病毒学研究现状和未来发展的认识。
关键词水产动物病毒学    鱼类病毒    虾类病毒    两栖和爬行动物病毒    疾病诊断与防控    

水产养殖业的兴起被认为是百年来全球粮食生产中最深刻的变革之一[1-2],也是满足当今人类需求最环保的、可持续发展的产业之一[3-4]。然而,几乎各种养殖水产动物都受到由病毒、细菌、寄生虫或其他新生和再生病原微生物感染的威胁[5]。病害流行已成为水产养殖业可持续发展的制约因素[6-8],尤其是病毒病,发病快、死亡率高,潜伏期长短有异,一旦发病即无有效药物可治。由于病毒病是危害水生动物最普遍和严重的病害,长期以来,一直被作为研究的热点与难点[9-12]。近五十年来,研究者们已围绕水产动物病毒学开展了大量研究。本研究将简要介绍鱼、虾、蛙、鳖等不同水产动物病毒研究的现状及动态,并探讨我国水产动物病毒学研究的发展趋势。

1 水产动物病毒与病毒病

国内已解析的水产动物病毒基因组有数十种,而新分离鉴定的毒株则更多。为查阅方便,下面按水产养殖动物的种类,如鱼类、两栖类、爬行类、虾类、蟹类、贝类的病毒病及其报道的时间先后,简要概述相关研究。

1.1 鱼类病毒

本小节分别就鱼类呼肠孤病毒、鱼类虹彩病毒、鱼类弹状病毒、双节段RNA病毒及疱疹病毒等五类鱼类病毒进行介绍。

鱼类呼肠孤病毒

我国报道的第一个鱼类病毒就是20世纪70年代末发现的草鱼出血病病毒(grass carp hemorrhage virus, GCHV)[13-14]。借助电镜观察、鱼类细胞培养等技术,对该病毒进行了分离鉴定[15-16]。在1988年出版的英文专著《鱼类病毒与鱼类病毒病》(Fish Viruses and Fish Viral Diseases)中引用了上述相关文献[15],认为中国学者报道的草鱼呼肠孤病毒(grass carp reovirus, GCRV)是引起草鱼(Ctenopharyngodon idella)幼鱼急性出血病的一种新病原[17]。为了深入认识该病毒的病原性,并进行有效防控,人们现仍在继续改进草鱼呼肠孤病毒的诊断方法或尝试更有效的攻毒感染方式[18-19]

水生呼肠孤病毒属(Aquareovirus)成员是具有11节段(S1–S11)双链RNA的基因组、双层衣壳、直径约75 nm的无囊膜(envelope)正20面体颗粒(ViralZone, Aquareovirus,https://viralzone.expasy.org/605?outline=all_by_species)。至2014年,在国内已分离鉴定的草鱼呼肠孤病毒就超过了30株[20]。经比较分析显示,不同草鱼呼肠孤病毒毒株对细胞的敏感性存在差异,其基因组结构或基因组图谱也不同[21-22]。近些年,不仅解析了新分离到的草鱼呼肠孤病毒毒株的基因组序列[23],还分别对从淡水鱼、海水鱼中分离鉴定的呼肠孤病毒基因组序列进行了解析和深度比较,结合基因功能的分析,阐明大菱鲆呼肠孤病毒(turbot Scophthalmus maximus reovirus, SMReV)所编码融合相关小跨膜蛋白(fusion-associated small transmembrane protein, FAST protein)致宿主细胞病变作用及其分子机理[24]。经对鲈鱼呼肠孤病毒(larger mouth bass Micropterus salmoides reovirus, MsReV)基因组测序及7个结构基因级联序列进行多重比对,揭示鱼类呼肠孤病毒基因组结构与其宿主所生存的淡水、海水环境有关[25]。另外,还从养殖斑点叉尾鮰(Ictalurus punctatus)中也鉴定了一株呼肠孤病毒[26]

利用冷冻电镜进行三维重构,解析了草鱼呼肠孤病毒近原子分辨率的完整结构[27]。鉴定了能与草鱼呼肠孤病毒外衣壳蛋白作用的草鱼蛋白,并阐明其相互作用分子机制[28-29]。开展了对草鱼呼肠孤病毒的感染及其宿主细胞的抗病毒免疫应答研究,报道鲫囊胚细胞系在经紫外线灭活处理的草鱼出血病毒GCHV作用后,能产生有活性、呈现抗病毒状态的干扰素(interferon, IFN)[30-31]。干扰素是脊椎动物抗病毒系统的标志物[32]。就实验鱼稀有鮈鲫(Gobiocypris rarus)对草鱼呼肠孤病毒感染的反应进行测试,结果显示,草鱼呼肠孤病毒能上调稀有逗鲫鳃中干扰素相关基因的表达[33]。已查明,草鱼具备维甲酸诱导基因I (retinoic acid inducible-gene I, RIG-I)介导的抗草鱼呼肠孤病毒先天性免疫信号通路[34]。另外,证实草鱼呼肠孤病毒具有免疫逃逸能力,可通过利用病毒编码蛋白削弱或消除宿主干扰素应答[35-36]。草鱼呼肠孤病毒GCReV-109 基因S11节段所编码的VP33蛋白具有良好免疫原性,其抗体能抑制草鱼呼肠孤病毒的感染[37],现已研发出草鱼呼肠孤病毒相应的核酸疫苗[38]。测试分析草鱼对不同呼肠孤病毒株反应的转录组数据,可分为温和型或强烈型,不同病毒株的毒力与其潜伏期长短、宿主免疫应答方式有关[39]。可见,草鱼呼肠孤病毒无疑是我国研究最早、也最为详细的水产动物病毒之一。

鱼类虹彩病毒

1996年,我国学者就从发病牛蛙[Rana(Lithobates)catesbeiana]中分离鉴定属于虹彩病毒科(Iridoviridae)成员的沼泽绿牛蛙蛙病毒(Rana Grylio virus, RGV)[40],这也是国内水产动物虹彩病毒研究的最早报道。随后,从包括鱼类、两栖类和爬行类在内的多种水产动物中都分离到虹彩病毒[41-42]。如鱼类虹彩病毒有:鳜鱼传染性脾肾坏死病毒(infectious spleen and kidney necrosis virus, ISKNV)[43]、大黄鱼虹彩病毒(large yellow croaker iridovirus, LYCIV)[44]、大菱鲆红体病虹彩病毒(turbot reddish body iridovirus, TRBIV)[45]等。

为了解牙鲆淋巴囊肿病毒中国株(lymphocystis disease virus isolated from China, LCDV-C)的感染性,经对13种鱼类细胞感染性测试,用LCDV-C攻毒后,在草鱼细胞系(grass carp ovary,GCO)中观察到明显补丁样病变[46]。随后在2004年,报道了淋巴囊肿病毒中国株LCDV-C的全基因组序列[47],该基因组一直保持其脊椎动物虹彩病毒最大基因组的记录,直至 2016年从金头鲷(Sparus auratus)中分离的淋巴囊肿病毒(lymphocystis disease virus-Sparus auratus, LCDV-Sa)株(KX643370)为止。对来自10个不同虹彩病毒株或物种的羟类固醇脱氢酶蛋白序列进行了比较和分析[48],阐明LCDV-C与其他虹彩病毒分子特征[49],研究并阐明LCDV-C所编码的合成与修复DNA酶—胸苷酸合成酶(thymidylate synthase, TS)能诱导鱼类细胞转化,提供了LCDV-C的TS对宿主细胞有转化作用及能诱导宿主鱼产生囊肿的直接证据[50]。另有对鱼类虹彩病毒入侵过程及感染机制研究的报道,阐明鳜鱼传染性脾肾坏死病毒(ISKNV)是依赖发动蛋白(dynamin)和细胞微管骨架,通过胞膜窖-小窝体-内质网轨迹运动而进入宿主细胞[51]。还借助病毒单粒子示踪技术,阐释新加坡石斑鱼虹彩病毒(Singapore grouper iridovirus, SGIV)能由网格蛋白介导、pH依赖的胞吞途径,通过巨胞饮途径进入宿主细胞,而不是经小窝蛋白介导的胞吞途径[52]。经对石斑鱼抗虹彩病毒作用分子机理研究,认为石斑鱼的关键磷酸激酶(TBK1)可通过调节干扰素免疫和炎症反应,产生抗病毒活性[53]

虹彩病毒具有大小为150~280 kb的双链DNA基因组,有囊膜、直径大小为150~200 nm的球形颗粒[54]。除了从淡水、海水患病养殖鱼类中检测和分离到虹彩病毒外,也从两栖类、爬行类等养殖的低等水产动物、甚至无脊椎动物中检测分离到虹彩病毒。本研究将在后续的“两栖与爬行动物病毒”章节中,还会涉及虹彩病毒的内容。

鱼类弹状病毒

20世纪90年代,养殖鳜(Siniperca chuatsi)突发疾病并大批死亡。在从采集的患病鳜组织中,电镜观察到弹状病毒(mandarin fishSiniperca chuatsi rhabdovirus, SCRV)、球形病毒(Siniperca chuatsi spherical virus, SCSV)及杆状病毒(Siniperca chuatsi baculovirus, SCBV)[55],由此开始对鱼类弹状病毒研究。从患致死性出血综合征的胭脂鱼(Myxocyprinus asiaticus)中鉴定了能产生包涵体、两端都为尖头的胭脂鱼弹状病毒(Chinese sucker rhabdovirus, CSRV)[56-58]。从海水养殖鱼类中,鉴定了大菱鲆弹状病毒(turbotScophthalmus maximus rhabdovirus, SMRV)和牙鲆弹状病毒(flounder Paralichthys olivaceus rhabdovirus, PORV)[59-61]。测定了这些鱼类弹状病毒基因组序列[62-63],并经分析表明,鳜鱼弹状病毒SCRV和大菱鲆弹状病毒SMRV含5种主要结构蛋白,依次是核蛋白(nucleoprotein, N)、磷蛋白(phosphoprotein, P)、基质蛋白(matrix protein, M)、糖蛋白(glycoprotein, G)和RNA聚合酶(RNA polymerase,L),属于水疱病毒属(Vesiculovirus)。而牙鲆弹状病毒属于诺拉弹状病毒属(Novirhabdovirus),在基因组的G和L基因之间增加了非毒粒蛋白(non-virion protein,NV)基因, 使之基因组结构及编码蛋白的顺序为3’-N-P-M-G-NV-L-5’ [64]。制备了不同鱼类弹状病毒的单克隆抗体[65-66],并对鱼类弹状病毒与宿主细胞的相互作用及鱼抗病毒免疫等进行了研究,证实大菱鲆弹状病毒SMRV可诱导宿主细胞凋亡[67],当受到弹状病毒刺激后,从鱼皮肤组织中也能检测到抗体[68]。由半胱天冬酶介导的鳜鱼弹状病毒SCRV N蛋白裂解,能显著降低感染子代病毒滴度[69-70]。比较了分别用弹状病毒糖蛋白G基因与核蛋白N基因疫苗注射的鳜所产生的抗病毒免疫效果,显示含鳜鱼弹状病SCRV糖蛋白G基因比含核蛋白N基因的核酸疫苗有更强的抗弹状病毒免疫作用[71]

从患病鳢科鱼组织中,分离鉴定不同的弹状病毒。如杂交鳢弹状病毒(hybrid snakehead rhabdovirus-C1207,HSHRV-C1207)[72-74]、乌鳢水泡病毒(snakehead fish vesiculovirus, SHVV)和斑鳢弹状病毒(Channa maculata rhabdovirus, CHRV)等。对乌鳢水泡病毒SHVV与宿主的相互作用及致病机理也进行研究[75-76],结果表明乌鳢水泡病毒能通过调节宿主细胞微小RNA分子miR-214而减少干扰素IFN-α的表达,从而逃避宿主先天性免疫,有利于子代病毒复制[77]

鲤春病毒血症病毒(spring viremia of carp virus, SVCV)的P蛋白可作为宿主细胞关键磷酸激酶TBK1的诱饵,削弱干扰素调节转录因子3 (interferon regulatory transcription factor 3, IRF3)的磷酸化作用,从而抑制宿主干扰素表达,以助病毒免疫逃避[78]。已开展虹鳟(Oncorhynchus mykiss)抗传染性造血器官坏死病病毒(infectious hematopoietic necrosis virus, IHNV)的分子免疫学、抗病毒动力学及非编码小分子RNA (miRNAs)差异表达对病毒复制影响的研究,阐明胞内干扰素(intracellular IFN, iIFN)能诱导鱼体快速呈现抗病毒状态,还检测到差异表达的非编码小分子miRNAs能参与虹鳟抗传染性造血器官坏死病毒IHNV的免疫[79-80]。经对弹状病毒刺激的硬骨鱼抗原递呈系统进行分析,并对鲤春病毒血症病毒(SVCV)和草鱼呼肠孤病毒(grass carp hemorrhagic virus, GCHV)刺激宿主抗原递呈系统进行比较,阐释鱼类主要组织相容性复合体(major histocompatibility complex,MHC)的结构与作用[81]

弹状病毒科成员(Rhabdoviridae)是基因组为单一负链RNA、有囊膜、呈子弹状或杆状、直径大小约为75 nm×180 nm颗粒的一大类病毒[82]。在2018年世界动物卫生组织须申报鱼类传染病名录中(2018年OIE-listed diseases, http://www.oie.int/en/animal-health-in-the-world/oie-listed-diseases-2018/),列出3种鱼类弹状病毒, 包括传染性造血器官坏死病病毒(infectious hemntopoietic necrosis virus, IHNV)、鲤春病毒血症病毒(SVCV)和病毒性出血败血症病毒(viral haemorrhagic septicaemia virus, VHSV)。国内对这3种病毒开展了检测、感染性、致病性、分离及基因型分析等研究 [83-89]

双节段RNA病毒

2008年从患病牙鲆(Paralichthys olivaceus)中分离鉴定到一株双节段RNA病毒(Paralichthys olivaceus, POBV),并已进行其基因组测序。该病毒基因组中节段A和节段B的大小各是3 091 bp和2 780 bp,其中节段A编码 PV2-VP4-VP3 和非结构蛋白VP5基因;而节段B仅编码VP1基因[90]。这是我国第一例非鲑鱼宿主来源的双节段RNA病毒完整基因组序列的相关报道。2017年报道了从虹鳟中分离的一株传染性胰腺坏死病毒基因组测序结果,其节段A和节段B的大小分别是3 099 bp和2 789 bp。经与已知虹鳟传染性胰腺坏死病毒(infectious pancreatic necrosis virus,IPNV)代表株 ChRtm213及日本株A9的基因组序列比对,显示有不同程度的变异[91]。有对虹鳟传染性胰腺坏死病毒IPNV的衣壳蛋白进行了克隆表达、单抗制备及检测的相关报道[92]

双RNA病毒科(Birnaviridae)的成员基因组为双节段双链RNA,病毒为无囊膜、直径约 60 nm 的二十面体球形颗粒[93]。水产动物双RNA病毒的代表株是能引起鲑科鱼类高致死率、传染性急性病的传染性胰脏坏死病毒IPNV。我国已有关于传染性胰腺坏死病病毒IPNV研究的报道主要集中在对该病毒的检测与诊断方面[94-96]

疱疹病毒

已对鱼类疱疹病毒开展了细胞培养及不同毒株的分离鉴定[97-100]、组织病理[101]、分子及免疫诊断[102-103]、功能基因分析[104]等研究。

鱼类疱疹病毒被列入2016年由农业部渔业渔政管理局和全国水产技术推广总站编制发布的中国“国家水生动物疫病监测”名录。我们从自然发病、有典型鲫鳃出血病症状的鱼组织中,分离鉴定了一株鲫疱疹病毒(Crucian carp herpesvirus, CaHV)。组织病理及超微观察显示鲫的鳃和头肾是CaHV侵染和复制的主要靶器官,CaHV在鳃细胞中以出“芽”或通过细胞裂解方式群体释放。由于子代CaHV的这种释放方式相比通常以单颗粒出芽释放的病毒释放效率更高,对相邻细胞与整个组织的破坏力也更强,这就使鳃组织易发生急剧病变,鳃软骨组织溶融消失,部分鳃丝断裂、缺损或严重变形,直至整个鳃组织坏死和崩解[105]。虽同为鲤疱疹病毒属成员,但经与已知鲤疱疹病毒属(Cyprinivirus)其他成员,如鲤疱疹病毒(cyprinid herpesvirus,CyHV)不同株型(如:CyHV-1、CyHV-2、SY-C1和CyHV-3等)的基因组架构进行比较,虽然 CaHV与鱼蛙疱疹病毒科成员都含12个核心基因,也含共同保守基因或同源序列,但在基因组大小、基因组两端有无直接重复序列等方面却有显著差异[106-107],显示鱼蛙疱疹病毒科(Alloherpesviridae)成员存在遗传多样性。对鱼类疱疹病毒的功能基因也开展了研究,鲫疱疹病毒 CaHV ORF31R (CaHV-31R)是能编码一个含跨膜结构域(248–270 aa)和RNase E/G 家族蛋白的典型结构域(40–182 aa)的蛋白质,而该蛋白质能与2种有单层膜结构的细胞器—内质网和高尔基体共定位[108]。证明CyHV-2非结构蛋白 ORF4 可参与病毒复制,因此可将其作为病毒感染周期中的指示蛋白之一[109]。此外,还从患病欧洲鳗鲡(Anguilla anguilla)中分离鉴定了疱疹病毒, 认为疱疹病毒可能与鳗鲡“脱粘败血病”有关[110]。构建了锦鲤疱疹病毒(koi herpesvirus, KHV) ORF81蛋白和鲤病毒性春季病毒血症(SVCV) G蛋白重组乳酸杆菌疫苗,并用其诱导鲤科鱼类对KHV和SVCV感染产生保护性免疫作用[111]

鲤疱疹病毒属(Cyprinivirus)、鮰疱疹病毒属(Ictalurivirus)、鲑疱疹病毒属(Salmonivirus)和蛙疱疹病毒属(Batrachovirus)都是鱼蛙疱疹病毒科(Alloherpesviridae)成员,该科于2005年创立,归于疱疹病毒目(Herpesvirales)。据国际病毒分类委员会(10th ICTV)分类报告,它们是以鱼和蛙等水生动物为宿主的疱疹病毒病原,基因组为双链DNA,病毒颗粒直径约150~200 nm,核衣壳T=16对称,外有被膜(tegument)和囊膜的球形颗粒。该属病毒对鱼类有高致病性、强传染性和呈全球分布等特点[112]。不同疱疹病毒毒株可引起宿主鱼出现不同病症。一般认为鲤疱疹病毒1型(cyprinid herpesvirus-1, CyHV-1),可诱发锦鲤体表痘疮。鲤疱疹病毒2型(cyprinid herpesvirus-2, CyHV-2)可引起鲤等造血器官坏死及鱼鳃贫血。而鲤疱疹病毒3型(cyprinid herpesvirus-3, CyHV-3),也称为锦鲤疱疹病毒(koi herpesvirus, KHV),这类病毒则可引起锦鲤鳃溃疡[113]。疱疹病毒能感染生长在不同阶段的鱼,发病后的鱼群死亡率最高可达100% [114]

1.2 两栖与爬行动物病毒

包括蛙病毒属(Ranavirus)成员在内的的虹彩病毒科 (Iridoviridae)成员,由于其不仅感染蛙[115],还能跨种传播[116-118]。蛙病毒(Ranaviruses)能感染养殖和野生的各种低等脊椎动物,如引起无尾目的牛蛙、有尾目的大鲵(Andrias davidianus)、龟鳖目的中华鳖(Pelodiscus sinensis)等两栖爬行动物高致死率而受到关注。

两栖动物病毒

无尾两栖动物(蛙类)虹彩病毒:在1996年首次报道了沼泽绿牛蛙蛙病毒(Rana grylio virus, RGV)之后,测定了RGV基因组序列[119],可编码106个ORFs,其中包括虹彩病毒家族26个核心基因。点阵分析显示RGV的基因组序列排列顺序仅与3个已测序的虹彩病毒共线性。2002年报道了虎纹蛙病毒(tiger frog virus, TFV)及其基因组结构[120]。在鉴定蛙病毒RGV一个新囊膜蛋白的基础上[121],构建了重组蛙病毒并建立双荧光可控基因表达技术,运用于虹彩病毒基因功能研究[122-123],以及蛙病毒与宿主相互作用的研究[124]。宿主细胞内的线粒体片段化,膜电势升高,揭示RGV感染引起细胞凋亡是由线粒体介导的[125]。蛙病毒RGV的囊膜蛋白53R可被miRNA 干扰,使病毒复制受到抑制[126]。从细胞病变显微形态、病毒滴度、细胞病变与不同感染时间的相关性等不同侧面,比较了3种水生动物细胞系对不同蛙病毒株的敏感性,表明大鲵胸腺细胞系(giant salamander spleen cell, GSTC)对2种蛙病毒都更敏感[127]。近期,已完成对沼泽绿牛蛙蛙病毒(RGV)和大鲵蛙病毒(Andrias davidianus ranavirus, ADRV)感染大鲵的15个转录组分析,经对128 533个可编码蛋白基因比较,阐明蛙病毒(RGV)在感染大鲵早期,有较强的病毒基因表达和较弱的宿主转录组应答反应能力,而大鲵蛙病毒(ADRV)在感染自然宿主早期,病毒基因表达较弱,但所引起的宿主转录组应答却较强[128],这为深入分析蛙病毒跨种感染中与宿主的相互作用提供了新的数据和视角。

2015年,由 24位美、德、澳、中专家合作完成、出版了国际上首部蛙病毒英文专著Ranaviruses: lethal pathogens of ectothermic vertebrates[129],其中2位是中国专家。

有尾两栖动物(大鲵)虹彩病毒:自2010年始,四川农业大学报道了对大鲵蛙病毒(Chinese giant salamander virus, CGSV)电镜观察及PCR检测的结果[130-131],西北农林大学[132]、北京动植物检疫研究所和中国水科院长江所等单位分别报道了大鲵虹彩病毒(giant salamander iridovirus, GSIV)和(Andrias davidianus iridovirus, ADIV)的特性[133-134]、组织病理等[135]

2013年,由中国科学院水生生物研究所报道了大鲵蛙病毒(ADRV)的全基因组序列,并开展了其他相关研究。与已知的两栖类蛙病毒RGV全基因组进行了比对和进化分析,绘制出大鲵与两栖类蛙病毒亚群基因组特征及架构变化图[136]。对正常大鲵和感染病毒大鲵的血清与黏液蛋白图谱进行了比较,证实了经病毒感染后大鲵血清和黏液蛋白组分会出现变化[137]。开展对大鲵蛙病毒基因功能的研究[138],证实大鲵蛙病毒核心基因所编码的蛋白ADRV-96L具有腺苷三磷酸酶活性及促细胞增殖和生长的作用[139]。在新建大鲵胸腺细胞系(GSTC), 大鲵脾细胞系(GSSC)和大鲵肾细胞系(giant salamander kidney cell line, GSKC)3株细胞系的基础上,分别测试了这些细胞系对野生型及重组型大鲵蛙病毒(ADRV)的敏感性[140]。2014年由不同单位测定和报道了大鲵虹彩病毒毒株(ADIV 或ADRV-2;Chinese giant salamander iridovirus,CGSIV-HN1104,以及 GSIV)的基因组序列[141]

龟鳖病毒

我国龟鳖病毒病原的研究始于1996年,中国科学院水生生物研究所报道了中华鳖病毒(Trionyx sinesis virus, TSV)的分离、超微观察、结构多肽分析及对不同细胞感染性测定等研究[142]。观察到TSV宿主细胞会出现染色质高度凝集和边缘化、核碎裂并形成“凋亡小体”等凋亡性病变,同时也出现核膜崩解、线粒体膜膨大、胞膜破损、胞质液泡化等坏死性细胞超微病变[143],制备中华鳖病毒抗体,建立TSV的血清学检测方法[144]。中山大学和厦门大学也进行相关研究[145]。2009年由中国科学院南海海洋研究所和遗传发育所、深圳动植物检疫局等合作报道了中华鳖虹彩病毒(soft-shelled turtle iridovirus, STIV)全基因组的序列 [146]。另通过中和试验与酶联免疫试验对龟疱疹病毒(Testudo herpesvirus)进行检测,检出阳性率分别为6%和11%[147]。最近由南京师大经对数十种鱼类、两栖和爬行动物基因组进行系统发育分析,认为内源性逆转录病毒(endogenous retroviruses, EVV)在有颌脊椎动物中普遍存在的现象[148]

1.3 虾类病毒病

可检索到我国早期有关对虾病毒病的研究报道是在1991年,由中国科学院武汉病毒研究所借助电镜,从患病中国对虾组织中观察到一种球形病毒[149]。1995年,对虾病毒病研究的相关报道数量大增[150-155],有涉及对虾病毒形态、对虾抗病力、组织病理等的报道。

海水虾线头病毒

研究最为详细的海水虾病毒是对虾白斑综合征病毒(white spot syndrome virus, WSSV)。起初,由于不同学者研究方法及侧重点不同,该病毒的名称不同,被称为白斑杆状病毒(white spot baculovirus, WSBV)、对虾白斑综合病(white spot syndrome virus, WSSV)、对虾杆状DNA病毒(penaeid rod-shaped DNA virus, PRDV)、中国对虾杆状病毒病(Penaeus chinensis baculovirus, PCBV)等。通常认为,对虾白斑综合征病毒WSSV为含有囊膜、无包涵体的杆状双链DNA病毒,呈椭圆形,囊膜内主要由杆状的核衣壳和核衣壳内致密的髓核组成。属于线头病毒科(Nimaviridae)白斑病毒属(Whispovirus)中唯一成员。WSSV 的基因组大小约为300 kb,预测编码约180 种蛋白[156]

2001年报道从中国大陆分离到对虾白斑杆状病毒(white spot bacilliform virus, WSBV)基因组的全序列(AF332093)[157]。结合cDNA 芯片与抑制差减杂交(suppression subtractive hybridization, SSH)技术,以克氏原螯虾(Procambarus clarkii)作为对虾白斑综合征病毒WSSV的增殖模型,测试WSSV病毒表达基因和螯虾免疫相关基因,显示感染后对虾体内的蛋白酶抑制物表达水平会上升[158],并查明病毒基因在虾组织中的分布及对WSSV复制的作用[159]。证实中国对虾四跨膜蛋白超家族成员Tetraspanins 可能介导WSSV的感染[160]。经高通量测序和转录组分析获取对虾一批重要免疫相关基因和蛋白质[161]。从免疫识别、体液免疫、细胞免疫和免疫稳态维持等方面,阐述对虾抵御病原的先天性免疫调控体系框架及对虾白斑综合征病毒(WSSV)的致病性[162]。开展了对虾病毒基因克隆与分子诊断、病毒免疫、病毒基因功能等研究[163-166]。对来自不同地区WSSV的特定基因序列进行分析比较,显示WSSV序列中的缺失、重复单元数目,以及单核苷酸多态性(single nucleotide polymorphisms, SNPs)差异显著[167],涉及在对虾抗病毒WSSV免疫反应中,miRNA与siRNA的鉴定、miRNA调控细胞吞噬及细胞凋亡机制等内容[168-170]

淡水虾病毒

已证实淡水养殖的克氏原螯虾俗称小龙虾,能被对虾白斑综合征病毒(WSSV)侵染[171-172]。对人工感染克氏原螯虾血细胞和肝胰腺的转录组测试分析,获得一批与克氏原螯虾先天免疫系统相关的基因[173]。对克氏原螯虾组织切片进行观察,结果也显示感染虾的肝胰腺、肠、肌肉、鳃组织出现不同程度病变[174]

已从自然发病的克氏原螯虾的组织中鉴定了克氏原螯虾病毒(Procambarus clarkii virus, PCV)。完整的PCV病毒颗粒两端呈钝圆、有尾附器和囊膜;核衣壳有垂直于纵轴的约14个节(图 1),显示PCV有线头病毒科成员的超微形态特征。超薄切片电镜观察显示,在自然感染的小龙虾肝胰腺组织、肠和鳃细胞中分布大量的病毒颗粒。并已测定了PCV全基因组序列(MH663976),正在分析中。

图 1 负染的克氏原螯虾病毒电镜图 (a) 完整病毒颗粒;(b) 病毒核衣壳. 标尺=100 nm (李涛和张奇亚提供) Fig. 1 Electron micrograph of negatively stained PCV (a) the intact virion particle; (b) virus nucleocapsid particles. Bar=100 nm. (provided by Li T & Zhang QY)

另外,从患病的红螯光壳螯虾(Cherax quadricarinatus)的组织中检出了红螯光壳螯虾虹彩病毒(Cherax quadricarinatus iridovirus, CQIV)。经人工感染实验,证实红螯光壳螯虾、克氏原螯虾和凡纳滨对虾(Litopenaeus vannamei)对红螯光壳螯虾虹彩病毒(CQIV)敏感[175]

1.4 蟹及贝类病毒

从1987年在患蚌瘟病的三角帆蚌(Hyriopsis cumingii)组织中分离到嵌砂样病毒开始,我国开展了贝类病毒研究[176]。观察到形态多样、具有囊膜突起、内嵌有砂样颗粒及分节段单链RNA组成的三角帆蚌瘟病病毒(Hyriopsis cumingii plague virus,HcPV)[177]。研究表明,急性病毒性坏死性病毒(acute viral necrobiotic virus, AVNV)感染可使栉孔扇贝(Chlamys farreri)外套膜、鳃、胃、肾等器官出现严重病变,为该病毒是导致栉孔扇贝大量死亡的病毒病原提供了直接证据[178-179]。利用耗氧率、氨氮排泄率、超氧化物歧化酶等基因表达,及以血浆超氧化物歧化酶活性和碱性磷酸酶活性为指标,对栉孔扇贝对急性病毒性坏死性病毒(AVNV)感染应答进行评估,结果显示,病毒感染能引起宿主扇贝的多种生理和免疫反应,同时水温升高与病毒感染栉孔扇贝引起的死亡率相关[180]

自20世纪90年代末以来,鉴定了蟹病毒,包括蟹的小核糖核酸病毒、疱疹病毒、呼肠孤病毒等[181-182]。测定了锯缘青蟹(scylla serrata)双顺反子病毒(mud crab dicistrovirus, MCDV)的基因组,显示其为单分子线性正义ssRNA[183]

2 小结与展望

水产养殖动物正面临新发和再发病毒病增多、流行区域广、传播速度快、死亡率高、危害大等严峻挑战。虽自从德、俄、加等国学者提出鱼类淋巴囊肿和鱼痘是由病毒病原引起、确认在德国发生的虹鳟肾和肝坏死病是病毒性败血症 (viral hemorrhagic septicemia, VHS)[184-185] 之后40年,20世纪70年代后期,中国水产病毒学研究才开启并迅速崛起。对包括不同淡海水鱼类病毒、虾蟹贝等无脊椎水产动物病毒、鳖蛙等两栖爬行动物病毒都进行了研究和报道。不仅将有关科研成果撰写汇编成论著与教科书[186-192],介绍常见水产动物疾病的病原、流行情况、病症、病理、诊断及防控方法,涉及水产动物病毒的形态与结构、病毒的分类、病毒的增殖及病毒致病机理等方面,拓展了水产病毒学知识,也在相关专业期刊中留下中国水产病毒学研究的历史印记[193-200]

近年,借助各种新技术新方法,对水产动物病毒研究也更加深入。如抗病鱼类品种分子模块筛选[201]、量子点对草鱼呼肠孤病毒入侵单粒示踪[202], 利用基因敲除或RNA干扰技术,研究水产无脊椎动物的抗病毒免疫机制[203-204],甚至还从更大尺度上探讨了包括水产动物病毒在内的各种水生病毒的多样性、进化贡献及生态作用[205],使人们能以更开阔的视野探寻水产动物病毒学研究的发展趋势。由此预测:① 基于对病原本质特征的认识,可以研发高效、精准、实用的水产动物病毒病检测诊断技术方法,构建预警预报体系;② 由不当用药治疗向疾病预防为主的方向转变,防患于未然;③ 强化水产动物抗病毒免疫机制研究,加速研发安全高效的免疫综合防控新技术,包括疫苗免疫与生态防控并举;④ 提升公众参与意识,并采纳高新技术,消除环境中有害因素,阻断、避免或减少病毒病的传播;⑤ 测评养殖水产动物健康阈值(control threshold)及遗传特性,筛选和运用抗病分子标记,从源头做起,构建智能生态健康水产养殖体系,加速水产养殖方式的变革[206]。预期这些水产动物抗病毒病健康养殖的路径,将会成为中国水产动物病毒学发展的必然趋势。在已初步形成富有特色的中国水产病毒病研究主题、水产病毒病诊断预警与综合防控体系,讲述中国水产养殖成功精彩故事[207]的基础上,研究者们正积极致力于抗病良种选育,注重过程预警预报与病害控制,坚持健康养殖及保水渔业研究,以期为中国乃至世界水产养殖的健康发展奠定基础。

最后,在此感谢读者、编辑、审稿专家,以及几十年来为推动我国水产动物病毒学发展付出辛勤汗水和努力劳动的人们。但限于文稿篇幅与作者的视野,难免有遗漏或差错,敬请见谅与斧正。

参考文献
[1] Anonymous SEMBV-an emerging viral threat to cultured shrimp in Asia[J]. CP Shrimp News, 1995, 3: 2-3. (0)
[2] Walker P J, Winton J R. Emerging viral diseases of fish and shrimp[J]. Veterinary Research, 2010, 41(6): 51 DOI: 10.1051/vetres/2010022 (0)
[3] Frankic A, Hershner C. Sustainable aquaculture: developing the promise of aquaculture[J]. Aquaculture International, 2003, 11(6): 517-530 DOI: 10.1023/B:AQUI.0000013264.38692.91 (0)
[4] Lockwood G S. Aquaculture: Will It Rise to Its Potential to Feed the World?[M]. United States: Blurb, 2017. (0)
[5] 桂建芳, 朱作言. 水产动物重要经济性状的分子基础及其遗传改良[J]. 科学通报, 2012, 57(15): 1751-1760
Gui J F, Zhu Z Y. Molecular basis and genetic improvement of economically important traits in aquaculture animals[J]. Chinese Science Bulletin, 2012, 57(15): 1751-1760 (0)
[6] Austin B. Infectious Disease in Aquaculture: Prevention and Control[M]. Cambridge, UK: Woodhead Publishing, 2012. (0)
[7] Bacharach E, Mishra N, Briese T, et al. Characterization of a novel orthomyxo-like virus causing mass die-offs of tilapia[J]. mBio, 2016, 7(2): e00431-16 (0)
[8] Kibenge F S B, Godoy M G. Aquaculture Virology[M]. London: Academic Press, 2016. (0)
[9] 张奇亚, 桂建芳. 水产动物的病毒基因组及其病毒与宿主的相互作用[J]. 中国科学: 生命科学, 2015, 58(2): 156-169
Zhang Q Y, Gui J F. Virus genomes and virus-host interactions in aquaculture animals[J]. Science China Life Sciences, 2015, 58(2): 156-169 (0)
[10] Kibenge F S B, Godoy M G. Aquaculture Virology[M]. London: Academic Press, 2016. (0)
[11] Gui L, Chinchar V G, Zhang Q Y. Molecular basis of pathogenesis of emerging viruses infecting aquatic animals[J]. Aquaculture and Fisheries, 2018, 3(1): 1-5 DOI: 10.1016/j.aaf.2017.12.003 (0)
[12] Gui L, Zhang Q Y. Disease prevention and control[M]//Gui J F, Tang Q S, Li Z J, et al. Aquaculture in China: Success Stories and Modern Trends. Chichester, UK: Wiley-Blackwell, 2018: 577-598. (0)
[13] 陈燕燊. 草鱼出血病病原的研究[J]. 水生生物学集刊, 1978, 6(3): 321-330
Chen Y S. Studies on the causative agent of hemorrhage of the grass carp (Ctenopharyngodon idellus) [J]. Acta Hydrobiologica Sinica, 1978, 6(3): 321-330 (0)
[14] 王精豹. 草鱼出血病病原的研究Ⅱ. 电镜观察[J]. 水生生物学集刊, 1980, 7(1): 75-80
Wang J B. Studies on the causative agent of haemorrhage of the grass carp (Ctenopharyngodon idellus) II. electron microscopic observation [J]. Acta Hydrobiologica Sinica, 1980, 7(1): 75-80 (0)
[15] 陈燕燊, 江育林. 草鱼出血病病毒形态结构及其理化特性的研究[J]. 科学通报, 1984, 29(6): 832-835
Chen Y S, Jiang Y L. Morphological and physico-chemical characterization of the hemorrhagic virus of grass carp[J]. Chinese Science Bulletin, 1984, 29(6): 832-835 (0)
[16] 中国科学院武汉病毒所草鱼出血病研究协作组, 中国水产科学研究院长江水产研究所沙市分所草鱼出血病研究协作组. 草鱼出血病病毒的电子显微镜观察初报[J]. 淡水渔业, 1983, 13(3): 39
Wuhan Institute of Virology of CAS, Yangtze River Fisheries Research Institute of CAFS, the Research Group of Grass Carp Hemorrhagic Disease. Electron microscopic observation of the virus of grass carp hemorrhagic disease[J]. Freshwater Fisheries, 1983, 13(3): 39 (0)
[17] Wolf K. Fish viruses and fish viral diseases[M]. London: Cornell University Press, 1988, 65-68 (0)
[18] Gao X C, Chen Z Y, Liu J, et al. Development and application of monoclonal antibodies for detection and analysis of aquareoviruses[J]. Journal of Immunoassay and Immunochemistry, 2016, 37(4): 376-389 DOI: 10.1080/15321819.2016.1151440 (0)
[19] 褚鹏飞, 何利波, 汪浩, 等. 一种新型草鱼呼肠孤病毒人工感染方法[J]. 水生生物学报, 2016, 40(6): 1166-1171
Chu P F, He L B, Wang H, et al. Preliminary study on a new method of GCRV artificial infection[J]. Acta Hydrobiologica Sinica, 2016, 40(6): 1166-1171 (0)
[20] Zeng W W, Wang Y Y, Liang H R, et al. A one-step duplex rRT-PCR assay for the simultaneous detection of grass carp reovirus genotypes I and II[J]. Journal of Virological Methods, 2014, 210: 32-35 DOI: 10.1016/j.jviromet.2014.08.024 (0)
[21] 李军, 王铁辉, 陆仁后, 等. 草鱼出血病病毒的研究进展[J]. 海洋与湖沼, 1999, 30(4): 445-453
Li J, Wang T H, Lu R H, et al. Advances in research of hemorrhagic virus of grass carp[J]. Oceanologia et Limnologia Sinica, 1999, 30(4): 445-453 DOI: 10.3321/j.issn:0029-814X.1999.04.015 (0)
[22] Fan Y D, Rao S J, Zeng LB, et al. Identification and genomic characterization of a novel fish reovirus, Hubei grass carp disease reovirus, isolated in 2009 in China[J]. Journal of General Virology, 2013, 94: 2266-2277 DOI: 10.1099/vir.0.054767-0 (0)
[23] Pei C, Ke F, Chen ZY, et al. Complete genome sequence and comparative analysis of grass carp reovirus strain 109(GCReV-109) with other grass carp reovirus strains reveals no significant correlation with regional distribution[J]. Archives of Virology, 2014, 159: 2435-2440 DOI: 10.1007/s00705-014-2007-5 (0)
[24] Ke F, He L B, Pei C, et al. Turbot reovirus (SMReV) genome encoding a FAST protein with a non-AUG start site[J]. BMC Genomics, 2011, 12: 323 DOI: 10.1186/1471-2164-12-323 (0)
[25] Chen Z Y, Gao X C, Zhang Q Y. Whole-genome analysis of a novel fish reovirus (MsReV) discloses aquareovirus genomic structure relationship with host in saline environments[J]. Viruses, 2015, 7(8): 4282-4302 DOI: 10.3390/v7082820 (0)
[26] Xu J, Zeng L B, Luo X S, et al. Reovirus infection emerged in cultured channel catfish, Ictalurus punctatus, in China [J]. Aquaculture, 2013, 372-375: 39-44 DOI: 10.1016/j.aquaculture.2012.10.011 (0)
[27] Wang X R, Zhang F X, Su R, et al. Structure of RNA polymerase complex and genome within a dsRNA virus provides insights into the mechanisms of transcription and assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7344-7349 DOI: 10.1073/pnas.1803885115 (0)
[28] Yu F, Wang H, Liu W S, et al. Grass carp Ctenopharyngodon idella Fibulin-4 as a potential interacting partner for grass carp reovirus outer capsid proteins [J]. Fish & Shellfish Immunology, 2016, 48: 169-174 (0)
[29] Wang H, Liu W S, Sun M, et al. Inhibitor analysis revealed that clathrin-mediated endocytosis is involed in cellular entry of type III grass carp reovirus[J]. Virology Journal, 2018, 15(1): 92 DOI: 10.1186/s12985-018-0993-8 (0)
[30] Zhang Y B, Jiang J, Chen Y D, et al. The innate immune response to grass carp hemorrhagic virus (GCHV) in cultured Carassius auratus blastulae (CAB) cells [J]. Developmental & Comparative Immunology, 2007, 31(3): 232-243 (0)
[31] Zhang Y B, Gui J F. Molecular regulation of interferon antiviral response in fish[J]. Developmental & Comparative Immunology, 2012, 38(2): 193-202 (0)
[32] Zou J, Secombes C J. Teleost fish interferons and their role in immunity[J]. Developmental & Comparative Immunology, 2011, 35(12): 1376-1387 (0)
[33] 苏建国, 朱作言, 汪亚平. 草鱼呼肠孤病毒上调稀有逗鲫鳃中TLR3和Mx基因的表达[J]. 水生生物学报, 2008, 32(5): 728-734
Su J G, Zhu Z Y, Wang Y P. Up-regulating expressions of toll-like receptor 3 and mx genes in gills by grass carp reovirus in rare minnow, Gobiocypris rarus [J]. Acta Hydrobiologica Sinica, 2008, 32(5): 728-734 (0)
[34] Wan Q Y, Yang C R, Rao Y L, et al. MDA5 induces a stronger interferon response than RIG-I to GCRV infection through a mechanism involving the phosphorylation and dimerization of IRF3 and IRF7 in CIK cells[J]. Frontiers in Immunology, 2017, 8: 189 (0)
[35] Lu L F, Li S, Wang Z X, et al. Grass carp reovirus VP41 targets fish MITA to abrogate the interferon response[J]. Journal of Virology, 2017, 91(14): e00390-17 (0)
[36] Lu X B, Chen Y X, Cui Z W, et al. Characterization of grass carp CD40 and CD154 genes and the association between their polymorphisms and resistance to grass carp reovirus[J]. Fish & Shellfish Immunology, 2018, 81: 304-308 (0)
[37] Liu J, Pei C, Gao X C, et al. Fish reovirus GCRev-109 VP33 protein elicits protective immunity in rare minnows[J]. Archives of Virology, 2016, 161(3): 573-582 DOI: 10.1007/s00705-015-2675-9 (0)
[38] Gao Y, Pei C, Sun X Y, et al. Plasmid pcDNA3.1-s11 constructed based on the S11 segment of grass carp reovirus as DNA vaccine provides immune protection [J]. Vaccine, 2018, 36(25): 3613-3621 DOI: 10.1016/j.vaccine.2018.05.043 (0)
[39] He L B, Zhang A D, Pei Y Y, et al. Differences in responses of grass carp to different types of grass carp reovirus (GCRV) and the mechanism of hemorrhage revealed by transcriptome sequencing[J]. BMC genomics, 2017, 18: 452 DOI: 10.1186/s12864-017-3824-1 (0)
[40] 张奇亚, 李正秋, 江育林, 等. 沼泽绿牛蛙病毒的分离及其细胞感染的初步研究[J]. 水生生物学报, 1996, 20(4): 390-392
Zhang Q Y, Li Z Q, Jiang Y L, et al. Preliminary studies on virus isolation and cell infection from diseased frog Rana grylio [J]. Acta Hydrobiologica Sinica, 1996, 20(4): 390-392 (0)
[41] 陈在贤, 郑坚川, 江育林. 从患"红脖子病"甲鱼体分离到虹彩病毒[J]. 中国兽医学报, 1998, 18(2): 135-139
Chen Z X, Zheng J C, Jiang Y L. An iridovirus isolated from sick soft shelled turtle with "red neck disease"[J]. Chinese Journal of Veterinary Science, 1998, 18(2): 135-139 (0)
[42] Zhang Q Y, Li Z Q, Gui J F. Studies on morphogenesis and cellular interactions of Rana grylio virus in an infected fish cell line [J]. Aquaculture, 1999, 175(3-4): 185-197 DOI: 10.1016/S0044-8486(99)00041-1 (0)
[43] 邓敏, 何建国, 左涛, 等. 鳜鱼传染性脾肾坏死病毒(ISKNV)PCR检测方法的建立及虹彩病毒新证据[J]. 病毒学报, 2000, 16(4): 365-369
Deng M, He J G, Zuo T, et al. Infectious spleen and kidney necrosis virus (ISKNV) from Siniperca chuatsi: Development of a PCR detection method and the new evidence of iridovirus [J]. Chinese Journal of Virology, 2000, 16(4): 365-369 DOI: 10.3321/j.issn:1000-8721.2000.04.017 (0)
[44] Chen X H, Wang X W, Wu W Z. Diagnosis of iridovirus in large yellow croaker by PCR[J]. Acta Oceanologica Sinica, 2003, 22(4): 635-641 (0)
[45] Shi C Y, Wang Y G, Yang S L, et al. The first report of an iridovirus-like agent infection in farmed turbot, Scophthalmus maximus, in China [J]. Aquaculture, 2004, 236(1-4): 11-25 DOI: 10.1016/j.aquaculture.2003.11.007 (0)
[46] Zhang Q Y, Ruan H M, Li Z Q, et al. Infection and propagation of lymphocystis virus isolated from the cultured flounder Paralichthys olivaceus in grass carp cell lines [J]. Diseases of Aquatic Organisms, 2003, 57(1-2): 27-34 (0)
[47] Zhang Q Y, Xiao F, Xie J, et al. Complete genome sequence of lymphocystis disease virus isolated from China[J]. Journal of Virology, 2004, 78(13): 6982-6994 DOI: 10.1128/JVI.78.13.6982-6994.2004 (0)
[48] 曾首英, 张奇亚, 严兴洪, 等. 牙鲆淋巴囊肿病毒中国株(LCDV-C)羟类固醇脱氢酶基因的特征分析[J]. 病毒学报, 2005, 21(2): 131-135
Zeng S Y, Zhang Q Y, Yan X H, et al. Characterization of hydroxysteroid dehydrogenase gene from lymphocystis disease virus isolated in China[J]. Chinese Journal of Virology, 2005, 21(2): 131-135 DOI: 10.3321/j.issn:1000-8721.2005.02.009 (0)
[49] Zhang Q Y, Zhao Z, Xiao F, et al. Molecular characterization of three Rana grylio virus (RGV) isolates and Paralichthys olivaceus lymphocystis disease virus (LCDV-C) in iridoviruses [J]. Aquaculture, 2006, 251(1): 1-10 DOI: 10.1016/j.aquaculture.2005.05.012 (0)
[50] Zhao Z, Shi Y, Ke F, et al. Constitutive expression of thymidylate synthase from LCDV-C induces a transformed phenotype in fish cells[J]. Virology, 2008, 372(1): 118-126 DOI: 10.1016/j.virol.2007.10.028 (0)
[51] Guo C J, Wu Y Y, Yang L S, et al. Infectious spleen and kidney necrosis virus (a fish iridovirus) enters Mandarin fish fry cells via caveola-dependent endocytosis[J]. Journal of Virology, 2012, 86(5): 2621-2631 DOI: 10.1128/JVI.06947-11 (0)
[52] Wang S W, Huang X H, Huang Y H, et al. Entry of a novel marine DNA virus, singapore grouper iridovirus, into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner[J]. Journal of Virology, 2014, 88(22): 13047-13063 DOI: 10.1128/JVI.01744-14 (0)
[53] Hu Y, Huang Y H, Liu J X, et al. TBK1 from orange-spotted grouper exerts antiviral activity against fish viruses and regulates interferon response[J]. Fish & Shellfish Immunology, 2018, 73: 92-99 (0)
[54] Chinchar V G, Hick P, Ince I A, et al. ICTV virus taxonomy profile: Iridoviridae [J]. Journal of General Virology, 2017, 98(5): 890-891 DOI: 10.1099/jgv.0.000818 (0)
[55] 张奇亚, 李正秋. 在患病鳜鱼组织中观察到3种病毒[J]. 科学通报, 1999, 44(5): 437-441
Zhang Q Y, Li Z Q. Three different viruses observed from the tissues of diseased mandarin fish Siniperca chuatsi [J]. Chinese Science Bulletin, 1999, 44(5): 437-441 (0)
[56] Zhang Q Y, Li Z Q, Gui J F. Isolation of a lethal rhabdovirus from the cultured Chinese sucker Myxocyprinus asiaticus [J]. Diseases of Aquatic Organisms, 2000, 42(1): 1-9 (0)
[57] 张奇亚, 李正秋. 胭脂鱼弹状病毒包涵体在培养细胞中的形成[J]. 中国兽医学报, 2001, 21(1): 38-41
Zhang Q Y, Li Z Q. Formation process of inclusion bodies of the Chinese sucker rhabdovirus in an infected fish cell line[J]. Chinese Journal of Veterinary Science, 2001, 21(1): 38-41 DOI: 10.3969/j.issn.1005-4545.2001.01.011 (0)
[58] 阮红梅, 李正秋, 张奇亚. 胭脂鱼弹状病毒对鲤科鱼类感染性的测定[J]. 水生生物学报, 2002, 26(5): 555-559
Ruan H M, Li Z Q, Zhang Q Y. Detection of the sensitivity of eight carps to Chinese sucker rhabdovirus[J]. Acta Hydrobiologica Sinica, 2002, 26(5): 555-559 DOI: 10.3321/j.issn:1000-3207.2002.05.023 (0)
[59] Tao J J, Gui J F, Zhang Q Y. Isolation and characterization of a rhabdovirus from co-infection of two viruses in mandarin fish[J]. Aquaculture, 2007, 262(1): 1-9 DOI: 10.1016/j.aquaculture.2006.09.030 (0)
[60] Zhang Q Y, Tao J J, Gui L, et al. Isolation and characterization of Scophthalmus maximus rhabdovirus [J]. Diseases of Aquatic Organisms, 2007, 74(2): 95-105 (0)
[61] 桂朗, 李正秋, 张奇亚. 牙鲆一株弹状病毒病原的分离与鉴定[J]. 水生生物学报, 2007, 31(3): 345-353
Gui L, Li Z Q, Zhang Q Y. Isolation and charaterization of a rhabdovirus from diseased flounder Paralichthys olivaceus [J]. Acta Hydrobiologica Sinica, 2007, 31(3): 345-353 DOI: 10.3321/j.issn:1000-3207.2007.03.008 (0)
[62] Tao J J, Zhou G Z, Gui J F, et al. Genomic sequence of mandarin fish rhabdovirus with an unusual small non-transcriptional ORF[J]. Virus Research, 2008, 132(1-2): 86-96 DOI: 10.1016/j.virusres.2007.10.018 (0)
[63] Zhu R L, Lei X Y, Ke F, et al. Genome of turbot rhabdovirus exhibits unusual non-coding regions and an additional ORF that could be expressed in fish cell[J]. Virus Research, 2011, 155(2): 495-505 DOI: 10.1016/j.virusres.2010.12.006 (0)
[64] Zhu R L, Zhang Q Y. Determination and analysis of the complete genome sequence of Paralichthys olivaceus rhabdovirus (PORV) [J]. Archives of Virology, 2014, 159(4): 817-820 DOI: 10.1007/s00705-013-1716-5 (0)
[65] Zhou G Z, Li Z Q, Zhang Q Y. Characterization and application of monoclonal antibodies against turbot (Scophthalmus maximus) rhabdovirus [J]. Viral Immunology, 2006, 19(4): 637-645 DOI: 10.1089/vim.2006.19.637 (0)
[66] Zhou G Z, Gui L, Li Z Q, et al. Generation and characterization of monoclonal antibodies against the flounder Paralichthys olivaceus rhabdovirus [J]. Journal of Virological Methods, 2008, 148(1-2): 205-210 DOI: 10.1016/j.jviromet.2007.11.010 (0)
[67] Du C S, Zhang Q Y, Li C L, et al. Induction of apoptosis in a carp leucocyte cell line infected with turbot (Scophthalmus maximus L.) rhabdovirus [J]. Virus Research, 2004, 101(2): 119-126 DOI: 10.1016/j.virusres.2003.12.034 (0)
[68] Lü A J, Li Z Q, Zhang Q Y. Detection of cutaneous antibodies in excised skin explants from Grass carp, Ctenopharyngodon idella (Valenciennes), immune to Scophthalmus maximus rhabdovirus [J]. Journal of Fish Diseases, 2008, 31(8): 559-565 DOI: 10.1111/jfd.2008.31.issue-8 (0)
[69] Zhou G Z, Zhu R, Gui J F, et al. Inhibition of Siniperca chuatsi rhabdovirus by RNA interference in a fish cell line [J]. Fish Pathology, 2012, 47(1): 30-32 DOI: 10.3147/jsfp.47.30 (0)
[70] Zhou G Z, Yi Y J, Chen Z Y, et al. Specific cleavage of the nucleoprotein of fish rhabdovirus[J]. Veterinary Pathology, 2015, 52(6): 1258-1262 DOI: 10.1177/0300985815570068 (0)
[71] Chen Z Y, Lei X Y, Zhang Q Y. The antiviral defense mechanisms in mandarin fish induced by DNA vaccination against a rhabdovirus[J]. Veterinary Microbiology, 2012, 157(3-4): 264-275 DOI: 10.1016/j.vetmic.2011.12.025 (0)
[72] 曾伟伟, 王庆, 王英英, 等. 一株鳢科鱼源弹状病毒的分离及鉴定[J]. 水产学报, 2013, 37(9): 1416-1424
Zeng W W, Wang Q, Wang Y Y, et al. Isolation and characterization of a rhabdovirus from snakehead fish (Ophicephalus striatus) [J]. Journal of Fisheries of China, 2013, 37(9): 1416-1424 (0)
[73] 罗霞, 邓国成, 赵长臣, 等. 池塘养殖斑鳢弹状病毒的分离与初步鉴定[J]. 水生生物学报, 2013, 37(4): 620-625
Luo X, Deng G C, Zhao C C, et al. Isolation and preliminary identification of rhabdovirus from Channa maculata cultured in pond [J]. Acta Hydrobiologica Sinica, 2013, 37(4): 620-625 (0)
[74] Fu X Z, Lin Q, Liang H R, et al. The biological features and genetic diversity of novel fish rhabdovirus isolates in China[J]. Archives of Virology, 2017, 162(9): 2829-2834 DOI: 10.1007/s00705-017-3416-z (0)
[75] Liu X D, Tu J G, Yuan J F, et al. Identification and characterization of micrornas in snakehead fish cell line upon snakehead fish vesiculovirus infection[J]. International Journal of Molecular Sciences, 2016, 17(2): 154 DOI: 10.3390/ijms17020154 (0)
[76] Sun L D, Yi L Z, Zhang C, et al. Glutamine is required for snakehead fish vesiculovirus propagation via replenishing the tricarboxylic acid cycle[J]. Journal of General Virology, 2016, 97(11): 2849-2855 DOI: 10.1099/jgv.0.000597 (0)
[77] Zhang C, Feng S S, Zhang W T, et al. MicroRNA miR-214 inhibits snakehead vesiculovirus replication by promoting IFN-α expression via targeting host adenosine 5'-monophosphate-activated protein kinase[J]. Frontiers in Immunology, 2017, 8: 1775 DOI: 10.3389/fimmu.2017.01775 (0)
[78] Li S, Lu L F, Wang Z X, et al. The P protein of spring viremia of carp virus negatively regulates the fish interferon response by inhibiting the kinase activity of TANK-binding kinase 1[J]. Journal of Virology, 2016, 90(23): 10728-10737 DOI: 10.1128/JVI.01381-16 (0)
[79] Cao Y S, Xu L M, LaPatra S E, et al. The kinetics and protection of the antiviral state induced by recombinant iIFN1a in rainbow trout against infectious hematopoietic necrosis virus[J]. Molecular Immunology, 2016, 76: 55-61 DOI: 10.1016/j.molimm.2016.06.002 (0)
[80] Cao Y S, Wang D, Li S W, et al. Identification and analysis of differentially expressed microRNAs in rainbow trout (Oncorhynchus mykiss) responding to infectious hematopoietic necrosis virus infection [J]. Developmental & Comparative Immunology, 2018, 88: 28-36 (0)
[81] Chen Z S, Zhang N Z, Qi J X, et al. The structure of the MHC class I molecule of bony fishes provides insights into the conserved nature of the antigen-presenting system[J]. The Journal of Immunology, 2017, 199(10): 3668-3678 DOI: 10.4049/jimmunol.1600229 (0)
[82] Walker P J, Blasdell K R, Calisher C H, et al. ICTV virus taxonomy profile: Rhabdoviridae [J]. Journal of General Virology, 2018, 99(4): 447-448 DOI: 10.1099/jgv.0.001020 (0)
[83] 陈中元, 刘荭, 李正秋, 等. 鲤病毒病原的感染性测定[J]. 中国水产科学, 2006, 13(4): 617-623
Chen Z Y, Liu H, Li Z Q, et al. Detection of viral pathogen from diseased common carp (Cyprinus carpio) by infectious tests [J]. Journal of Fishery Sciences of China, 2006, 13(4): 617-623 DOI: 10.3321/j.issn:1005-8737.2006.04.017 (0)
[84] 刘荭, 范万红, 史秀杰, 等. 国内养殖鱼类和进境鱼卵中传染性造血器官坏死病毒(IHNV)的检测及基因分析[J]. 华中农业大学学报, 2006, 25(5): 544-549
Liu H, Fan W H, Shi X J, et al. Detection and genetic analysis of infectious haematopoietic necrosis virus (IHNV) from cultured fish and imported fish larvae[J]. Journal of Huazhong Agricultural University, 2006, 25(5): 544-549 DOI: 10.3321/j.issn:1000-2421.2006.05.020 (0)
[85] Ou T, Zhu R L, Chen Z Y, et al. Isolation and identification of a lethal rhabdovirus from farmed rice field eels Monopterus albus [J]. Diseases of Aquatic Organisms, 2013, 106(3): 197-206 DOI: 10.3354/dao02660 (0)
[86] 徐黎明, 刘淼, 曾令兵, 等. 一株传染性造血器官坏死病病毒的致病性研究[J]. 水产学报, 2014, 38(9): 1584-1591
Xu L M, Liu M, Zeng L B, et al. Pathogenicity analysis of infectious haematopoietic necrosis virus isolate[J]. Journal of Fisheries of China, 2014, 38(9): 1584-1591 (0)
[87] 王树云, 高志强, 张旻, 等. 传染性造血器官坏死病病毒参考蛋白的研制[J]. 水产学报, 2016, 40(3): 388-395
Wang S Y, Gao Z Q, Zhang M, et al. Preparation of reference protein for infectious hematopoietic necrosis virus (IHNV)[J]. Journal of Fisheries of China, 2016, 40(3): 388-395 (0)
[88] 徐进, 周勇, 陈倩, 等. 鲤春病毒血症病毒糖蛋白的截短表达及其免疫原性分析[J]. 中国水产科学, 2016, 23(2): 352-358
Xu J, Zhou Y, Chen Q, et al. Expression and immunogenicity analysis of a truncated glycoprotein of spring viremia of carp virus (SVCV)[J]. Journal of Fishery Sciences of China, 2016, 23(2): 352-358 (0)
[89] 纪锋, 赵景壮, 刘淼, 等. 黑龙江地区鲤春病毒血症病毒的分离与基因型分析[J]. 中国水产科学, 2017, 24(5): 1141-1148
Ji F, Zhao J Z, Liu M, et al. Isolation and genotype analysis of spring viremia of carp virus strains from Heilongjiang Province in China[J]. Journal of Fishery Sciences of China, 2017, 24(5): 1141-1148 (0)
[90] Zhao Z, Ke F, Li Z Q, et al. Isolation, characterization and genome sequence of a birnavirus strain from flounder Paralichthys olivaceus in China [J]. Archives of Virology, 2008, 153(6): 1143-1148 DOI: 10.1007/s00705-008-0075-0 (0)
[91] Ji F, Zhao J Z, Liu M, et al. Complete genomic sequence of an infectious pancreatic necrosis virus isolated from rainbow trout (Oncorhynchus mykiss) in China [J]. Virus Genes, 2017, 53(2): 215-225 DOI: 10.1007/s11262-016-1408-9 (0)
[92] 连科迅, 赵丽丽, 张琳琳, 等. 传染性胰腺坏死病毒VP2 COE蛋白单克隆抗体的制备与初步应用[J]. 水产学报, 2013, 37(8): 1229-1235
Lian K X, Zhao L L, Zhang L L, et al. Preparation and preliminary application of monoclonal antibodies against VP2 COE protein of infectious pancreatic necrosis virus[J]. Journal of Fisheries of China, 2013, 37(8): 1229-1235 (0)
[93] Maclachlan N J, Dubovi E J. Birnaviridae and picobirnaviridae[M]//Maclachlan N J, Dubovi E J. Fenner's Veterinary Virology. 5th ed. Amsterdam: Elsevier, 2017: 319-325. (0)
[94] 江育林, 徐伯亥, 李伟, 等. 虹鳟传染性胰脏坏死病病毒(IPNV)的初步研究[J]. 水生生物学报, 1989, 13(4): 353-358
Jiang Y L, Xu B H, Li W, et al. Isolation and identification of infectious pancreatic necrosis virus (IPNV) from imported rainbow trout (Salmon gairdneri) in P. R. China [J]. Acta Hydrobiologica Sinica, 1989, 13(4): 353-358 (0)
[95] 童裳亮, Hetrick F M. 山东虹鳟暴发传染性胰脏坏死病(IPN)[J]. 海洋通报, 1989, 8(1): 118
Tong S L, Hetrick F M. A study on infectious pancreatic necrosis disease of rainbow trout Salmo gairdneri [J]. Marine Science Bulletin, 1989, 8(1): 118 (0)
[96] 熊权鑫, 朱玲, 汪开毓, 等. 一株虹鳟源传染性胰腺坏死病病毒的分离与鉴定[J]. 水产学报, 2018, 42(7): 1132-1139
Xiong Q X, Zhu L, Wang K Y, et al. Isolation and identification of infectious pancreatic necrosis virus from rainbow trout (Oncorhynchus mykiss) [J]. Journal of Fisheries of China, 2018, 42(7): 1132-1139 (0)
[97] 李霞, 福田颖穗. 金鱼疱疹病毒敏感细胞的体外培养[J]. 上海水产大学学报, 2003, 12(1): 12-18
Li X, Fukuda H. In vitro culture of goldfish cell sensitive to goldfish herpes virus [J]. Journal of Shanghai Fisheries University, 2003, 12(1): 12-18 (0)
[98] Dong C F, Weng S P, Li W, et al. Characterization of a new cell line from caudal fin of koi, Cyprinus carpio koi, and first isolation of cyprinid herpesvirus 3 in China [J]. Virus Research, 2011, 161(2): 140-149 DOI: 10.1016/j.virusres.2011.07.016 (0)
[99] 徐进, 曾令兵, 杨德国, 等. 鲤疱疹病毒2型武汉株的分离与鉴定[J]. 中国水产科学, 2013, 20(6): 1303-1309
Xu J, Zeng L B, Yang D G, et al. Isolation and characterization of Cyprinid herpesvirus 2 WH strain[J]. Journal of Fishery Sciences of China, 2013, 20(6): 1303-1309 (0)
[100] Wang J, Gui L, Chen Z Y, et al. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR[J]. Virus Genes, 2016, 52(4): 484-494 DOI: 10.1007/s11262-016-1325-y (0)
[101] Ding Z F, Xia S Y, Zhao Z M, et al. Histopathological characterization and fluorescence in situ hybridization of Cyprinid herpesvirus 2 in cultured Prussian carp, Carassius auratus gibelio in China [J]. Journal of Virological Methods, 2014, 206: 76-83 DOI: 10.1016/j.jviromet.2014.05.011 (0)
[102] 罗丹, 梁利国, 谢骏, 等. 2型鲤疱疹病毒双重PCR快速检测方法的建立及应用[J]. 中国预防兽医学报, 2014, 36(5): 379-382
Luo D, Liang L G, Xie J, et al. Development of duplex PCR for detection of Cyprinid herpesvirus 2[J]. Chinese Journal of Preventive Veterinary Medicine, 2014, 36(5): 379-382 DOI: 10.3969/j.issn.1008-0589.2014.05.11 (0)
[103] 孔善云, 姜有声, 许丹, 等. 一种基于Ⅱ型鲤疱疹病毒衣壳蛋白72的免疫学检测方法[J]. 中国水产科学, 2016, 23(2): 328-335
Kong S Y, Jiang Y S, Xu D, et al. An immunological method to detect CyHV-2 based on capsid protein 72[J]. Journal of Fishery Sciences of China, 2016, 23(2): 328-335 (0)
[104] 周井祥, 李新伟, 王好, 等. 锦鲤疱疹病毒-CJ株ORF81基因的克隆及生物信息学分析 [J]. 水产学报, 2011, 35(12): 1780-1786
Zhou J X, Li X W, Wang H, et al. Cloning and bioinformatics analysis of ORF81 gene of koi herpesvirus-CJ strain [J]. Journal of Fisheries of China, 2011, 35(12): 1780-1786 (0)
[105] 方进, 邓院生, 王俊, 等. 急性病毒性鲫鳃出血病的病理变化[J]. 中国水产科学, 2016, 23(2): 336-343
Fang J, Deng Y S, Wang J, et al. Pathological changes of acute viral hemorrhages in the gills of crucian carp[J]. Journal of Fishery Sciences of China, 2016, 23(2): 336-343 (0)
[106] Li L J, Luo Y Z, Gao Z X, et al. Molecular characterisation and prevalence of a new genotype of Cyprinid herpesvirus 2 in mainland China[J]. Canadian Journal of Microbiology, 2015, 61(6): 381-387 DOI: 10.1139/cjm-2014-0796 (0)
[107] Zeng X T, Chen Z Y, Deng Y S, et al. Complete genome sequence and architecture of crucian carp Carassius auratus herpesvirus (CaHV) [J]. Archives of Virology, 2016, 161(12): 3577-3581 DOI: 10.1007/s00705-016-3037-y (0)
[108] 王子豪, 张奇亚. 鲫疱疹病毒ORF31R(CaHV-31R)的特征及其编码蛋白与细胞器共定位[J]. 水产学报, 2019
Wang Z H, Zhang Q Y. Characterization of Carassius auratus herpesvirus ORF31R (CaHV-31R) and the encoded protein colocalize with cellular organs[J]. Journal of Fisheries of China, 2019 DOI: 10.11964/ifc.20180311207. (0)
[109] 晏文岩, 鲁建飞, 孔善云, 等. II型鲤疱疹病毒ORF4的多克隆抗体制备及其组织分布[J]. 微生物学通报, 2017, 44(8): 1938-1946
Yan W Y, Lu J F, Kong S Y, et al. Prokaryotic expression, polyclonal antibody preparation and tissue-tropism analysis of cyprinid herpesvirus II non-structural protein ORF4[J]. Microbiology China, 2017, 44(8): 1938-1946 (0)
[110] 葛均青, 杨金先, 龚晖, 等. 鳗鲡疱疹病毒的分离与鉴定[J]. 水产学报, 2014, 38(9): 1579-1583
Ge J Q, Yang J X, Gong H, et al. Isolation and identification of a herpesvirus from cultured European eels Anguilla anguilla in China [J]. Journal of Fisheries of China, 2014, 38(9): 1579-1583 (0)
[111] Cui L C, Guan X T, Liu Z M, et al. Recombinant lactobacillus expressing G protein of spring viremia of carp virus (SVCV) combined with ORF81 protein of koi herpesvirus (KHV): a promising way to induce protective immunity against SVCV and KHV infection in cyprinid fish via oral vaccination[J]. Vaccine, 2015, 33(27): 3092-3099 DOI: 10.1016/j.vaccine.2015.05.002 (0)
[112] Pellett P E, Davison A J, Eberle R, et al. Herpesvirales[M]//King A M Q, Adams M J, Carstens E B, et al. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. London: Academic Press, 2012: 99-107. (0)
[113] Goodwin A. Herpesviruses in fish[R]. Southern Regional Aquaculture Center (SRAC), 2012: 7. (0)
[114] Hartman K H, Yanong R P E, Petty B D, et al. Koi herpes virus (KHV) disease[EB/OL]. (2016-08-01)[2018-12-05] http://edis.ifas.ufl.edu/pdffiles/VM/VM11300. (0)
[115] Chinchar V G, Waltzek T B. Ranaviruses: Not just for frogs[J]. PLoS Pathogens, 2014, 10(1): e1003850 DOI: 10.1371/journal.ppat.1003850 (0)
[116] Abrams A J, Cannatella D C, Hillis D M, et al. Recent host-shifts in ranaviruses: signatures of positive selection in the viral genome[J]. Journal of General Virology, 2013, 94: 2082-2093 DOI: 10.1099/vir.0.052837-0 (0)
[117] Claytor S C, Subramaniam K, Landrau-Giovannetti N, et al. Ranavirus phylogenomics: signatures of recombination and inversions among bullfrog ranaculture isolates[J]. Virology, 2017, 511: 330-343 DOI: 10.1016/j.virol.2017.07.028 (0)
[118] Price S J, Ariel E, Maclaine A, et al. From fish to frogs and beyond: impact and host range of emergent ranaviruses[J]. Virology, 2017, 511: 272-279 DOI: 10.1016/j.virol.2017.08.001 (0)
[119] Lei X Y, Ou T, Zhu R L, et al. Sequencing and analysis of the complete genome of Rana grylio virus (RGV)[J]. Archives of Virology, 2012, 157(8): 1559-1564 DOI: 10.1007/s00705-012-1316-9 (0)
[120] He J G, Lü L, Deng M, et al. Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog[J]. Virology, 2002, 292(2): 185-197 DOI: 10.1006/viro.2001.1245 (0)
[121] Zhao Z, Ke F, Huang Y H, et al. Identification and characterization of a novel envelope protein in Rana grylio virus [J]. Journal of General Virology, 2008, 89: 1866-1872 DOI: 10.1099/vir.0.2008/000810-0 (0)
[122] He L B, Gao X C, Ke F, et al. A conditional lethal mutation in Rana grylio virus ORF 53R resulted in a marked reduction in virion formation [J]. Virus Research, 2013, 177(2): 194-200 DOI: 10.1016/j.virusres.2013.07.016 (0)
[123] He L B, Ke F, Wang J, et al. Rana grylio virus (RGV) envelope protein 2L: subcellular localization and essential roles in virus infectivity revealed by conditional lethal mutant [J]. Journal of General Virology, 2014, 95(3): 679-690 (0)
[124] 黄星, 裴超, 何利波, 等. 一株新的重组蛙病毒Δ67R-RGV的构建及基因67R的初步功能鉴定[J]. 病毒学报, 2014, 30(5): 495-501
Huang X, Pei C, He LB, et al. The construction of a novel recombinant virus Δ67R-RGV and preliminary analyses the function of the 67R gene[J]. Chinese Journal of Virology, 2014, 30(5): 495-501 (0)
[125] Huang Y H, Huang X H, Gui J F, et al. Mitochondrion-mediated apoptosis induced by Rana grylio virus infection in fish cells [J]. Apoptosis, 2007, 12(9): 1569-1577 DOI: 10.1007/s10495-007-0089-1 (0)
[126] Kim Y S, Ke F, Lei X Y, et al. Viral envelope protein 53R gene highly specific silencing and iridovirus resistance in fish cells by amiRNA[J]. PLoS One, 2010, 5(4): e10308 DOI: 10.1371/journal.pone.0010308 (0)
[127] 雷存科, 陈中元, 张奇亚. 三种水生动物细胞系对两株蛙病毒敏感性的比较[J]. 水产学报, 2016, 40(10): 1643-1647
Lei C K, Chen Z Y, Zhang Q Y. Comparative susceptibility of three aquatic animal cell lines to two ranaviruses[J]. Journal of Fisheries of China, 2016, 40(10): 1643-1647 (0)
[128] Ke F, Gui J F, Chen Z Y, et al. Divergent transcriptomic responses underlying the ranaviruses-amphibian interaction processes on interspecies infection of Chinese giant salamander[J]. BMC Genomics, 2018, 19: 211 DOI: 10.1186/s12864-018-4596-y (0)
[129] Gray M J, Chinchar V G. Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates[M]. New York: Springer, 2015. (0)
[130] 耿毅, 汪开毓, 李成伟, 等. 蛙病毒感染致养殖大鲵大规模死亡的电镜观察及PCR检测[J]. 中国兽医科学, 2010, 40(8): 817-821
Geng Y, Wang K Y, Li C W, et al. PCR detection and electron microscopic observation of bred Chinese giant salamander infected with ranavirus associated with mass mortality[J]. Chinese Veterinary Science, 2010, 40(8): 817-821 (0)
[131] Geng Y, Wang K Y, Zhou Z Y, et al. First report of a ranavirus associated with morbidity and mortality in farmed Chinese giant salamanders (Andrias davidianus) [J]. Journal of Comparative Pathology, 2011, 145(1): 95-102 DOI: 10.1016/j.jcpa.2010.11.012 (0)
[132] Dong W Z, Zhang X M, Yang C M, et al. Iridovirus infection in Chinese giant salamanders, China, 2010[J]. Emerging Infectious Diseases, 2011, 17(12): 2388-2389 DOI: 10.3201/eid1712.101758 (0)
[133] 江育林, 张旻, 景宏丽, 等. 患病中国大鲵中分离到一株虹彩病毒及其特性的研究[J]. 病毒学报, 2011, 27(3): 274-282
Jiang Y L, Zhang M, Jing H L, et al. Isolation and characterization of an iridovirus from sick giant salamander (Andrias davidianus) [J]. Chinese Journal of Virology, 2011, 27(3): 274-282 (0)
[134] 高正勇, 曾令兵, 肖汉兵, 等. 大鲵虹彩病毒理化及生物学特性研究[J]. 淡水渔业, 2012, 42(5): 17-21, 26
Gao Z Y, Zeng L B, Xiao H B, et al. Studies on the physical, chemical and biological characteristics of giant salamander iridovirus[J]. Freshwater Fisheries, 2012, 42(5): 17-21, 26 DOI: 10.3969/j.issn.1000-6907.2012.05.004 (0)
[135] 耿毅, 汪开毓, 李成伟, 等. 养殖大鲵蛙病毒自然感染的病理形态学观察[J]. 中国兽医学报, 2011, 31(11): 1640-1644
Gen Y, Wang K Y, Li C W, et al. Pathological changes of cultured Chinese giant salamanders (Andrias davidianus) naturally infected with ranavirus [J]. Chinese Journal of Veterinary Science, 2011, 31(11): 1640-1644 (0)
[136] Chen Z Y, Gui J F, Gao X C, et al. Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV) [J]. Veterinary Research, 2013, 44: 101 DOI: 10.1186/1297-9716-44-101 (0)
[137] 袁江迪, 陈中元, 张奇亚. 正常和蛙病毒感染后大鲵血清和黏液蛋白图谱比较分析[J]. 水生生物学报, 2016, 40(3): 594-600
Yuan J D, Chen Z Y, Zhang Q Y. Comparative analysis of serum and skin mucus protein profiles between ranavirus-infectud and normal Chinese giant salamander Andrias davidianus [J]. Acta Hydrobiologica Sinica, 2016, 40(3): 594-600 (0)
[138] 李涛, 陈中元, 张奇亚. 一个与大鲵蛙病毒(ADRV)感染相关基因-6R的克隆、原核表达及其产物分离[J]. 中国水产科学, 2015, 22(2): 353-358
Li T, Chen Z Y, Zhang Q Y. Cloning, prokaryotic expression and protein separation of 6R, an Andrias davidianus ranaviurs (ADRV) infection-related gene [J]. Journal of Fishery Sciences of China, 2015, 22(2): 353-358 (0)
[139] 张锐, 张奇亚. 大鲵蛙病毒编码96L蛋白(ADRV-96L)的腺苷三磷酸酶活性和促进细胞生长作用[J]. 微生物学通报, 2018, 45(5): 1090-1099
Zhang R, Zhang Q Y. Adenosine triphosphatase activity and cell growth promotion of Andrias davidianus ranavirus 96L-encoded protein (ADRV-96L) [J]. Microbiology China, 2018, 45(5): 1090-1099 (0)
[140] Yuan J D, Chen Z Y, Huang X, et al. Establishment of three cell lines from Chinese giant salamander and their sensitivities to the wild-type and recombinant ranavirus[J]. Veterinary Research, 2015, 46: 58 DOI: 10.1186/s13567-015-0197-9 (0)
[141] Li W, Zhang X, Weng S P, et al. Virion-associated viral proteins of a Chinese giant salamander (Andrias davidianus) iridovirus (genus Ranavirus) and functional study of the major capsid protein (MCP) [J]. Veterinary Microbiology, 2014, 172(1-2): 129-139 DOI: 10.1016/j.vetmic.2014.05.009 (0)
[142] 张奇亚, 李正秋, 江育林, 等. 中华鳖病毒病原的发现[J]. 科学通报, 1997, 42(6): 503-507
Zhang Q Y, Li Z Q, Jiang Y L, et al. Discovery of virus pathogen from soft-shelled turtle Trionyx sinesis [J]. Chinese Science Bulletin, 1997, 42(6): 503-507 (0)
[143] 张奇亚, 李正秋, 桂建芳. 中华鳖病毒感染宿主的细胞病理学研究[J]. 病毒学报, 1999, 15(1): 50-54
Zhang Q Y, Li Z Q, Gui J F. Cellular pathological studies on virus infection of soft-shelled turtles[J]. Chinese Journal of Virology, 1999, 15(1): 50-54 (0)
[144] 张奇正, 李正秋, 胡峻. 中华鳖病毒的血清学检测[J]. 水生生物学报, 2000, 24(4): 356-361
Zhang Q Y, Li Z Q, Hu J. Serological detection for the Trionyx sinensis virus [J]. Acta Hydrobiologica Sinica, 2000, 24(4): 356-361 DOI: 10.3321/j.issn:1000-3207.2000.04.009 (0)
[145] 陈平, 池信才, 陈细法, 等. 养殖中华鳖一种球形病毒的电镜观察[J]. 厦门大学学报(自然科学版), 1997, 36(4): 626-630
Chen P, Chi X C, Chen X F, et al. Ultrastructural evidence for a spherovirus infecting cultured Trionyx sinensis [J]. Journal of Xiamen University (Natural Science), 1997, 36(4): 626-630 DOI: 10.3321/j.issn:0438-0479.1997.04.027 (0)
[146] Huang Y H, Huang X H, Liu H, et al. Complete sequence determination of a novel reptile iridovirus isolated from soft-shelled turtle and evolutionary analysis of Iridoviridae [J]. BMC Genomics, 2009, 10: 224 DOI: 10.1186/1471-2164-10-224 (0)
[147] Nie Y C, Lu C P. Antibody against Testudo herpesvirus is not common in Chinese soft-shelled turtles [J]. Zentralblatt fur Veterinarmedizin. Reihe B. Journal of Veterinary Medicine. Series B, 1999, 46(10): 731-734 (0)
[148] Xu X Y, Zhao H Y, Gong Z, et al. Endogenous retroviruses of non-avian/mammalian vertebrates illuminate diversity and deep history of retroviruses[J]. PLoS Pathogens, 2018, 14(6): e1007072 DOI: 10.1371/journal.ppat.1007072 (0)
[149] 张建红, 陈棣华, 肖连春, 等. 中国对虾非包涵体杆状病毒在体内的感染与发生[J]. 中国病毒学, 1994, 9(4): 362-366
Zhang J H, Chen D H, Xiao L C, et al. Infection and morphogenesis of non-inclusion body baculovirus from Penaeus orientalis kishinoye in vivo [J]. Virologica Sinica, 1994, 9(4): 362-366 (0)
[150] 黄倢, 宋晓玲, 于佳, 等. 杆状病毒性的皮下及造血组织坏死-对虾暴发性流行病的病原和病理学[J]. 海洋水产研究, 1995, 16(1): 1-10
Huang J, Song X L, Yu J, et al. Baculoviral hypodermal and hematopoietic necrosis-study on the pathogen and pathology of the explosive epidemic disease of shrimp[J]. Marine Fisheries Research, 1995, 16(1): 1-10 (0)
[151] 江育林, 张奇亚, 刘荭, 等. 我国对虾暴发性流行病病因初探[J]. 水生生物学报, 1995, 19(2): 186-187
Jiang Y L, Zhang Q Y, Liu H, et al. Study on cause of infections diseaes of penaeid shrimp in China[J]. Acta Hydrobiologica Sinica, 1995, 19(2): 186-187 DOI: 10.3321/j.issn:1000-3207.1995.02.014 (0)
[152] 张奇亚. 国内外对虾病毒病研究综述[J]. 现代渔业信息, 1995, 10(10): 1-6
Zhang Q Y. A review of the shrimp virology[J]. Modern Fisheries Information, 1995, 10(10): 1-6 (0)
[153] Zhang Q Y, Jiang Y L, Li Y, et al. Isolation and characterization of nuleocapsids and enveloped virions of Penaeus monodon baculovirus (MBV) [J]. Acta Hydrobiologica Sinica, 1998, 22(Suppl. 1): 1-5 (0)
[154] 石正丽, 黄灿华, 陈棣华. 中国对虾杆状病毒基因克隆及探针制备与检测[J]. 中国病毒学, 1998, 13(3): 263-267
Shi Z L, Huang C H, Chen D H. Partial cloning of the genome of non-occluded baculovirus from Penaeus chinensis and preparing the probe for detection [J]. Virologica Sinica, 1998, 13(3): 263-267 (0)
[155] 何建国, 周化民, 姚伯, 等. 白斑综合症杆状病毒的感染途径和宿主种类[J]. 中山大学学报(自然科学版), 1999, 38(2): 65-69
He J G, Zhou H M, Yao B, et al. White spot syndrome baculovirus(WSBV) host range and transmission route[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1999, 38(2): 65-69 DOI: 10.3321/j.issn:0529-6579.1999.02.015 (0)
[156] Van Hulten M C W, Witteveldt J, Peters S, et al. The white spot syndrome virus DNA genome sequence[J]. Virology, 2001, 286(1): 7-22 DOI: 10.1006/viro.2001.1002 (0)
[157] Yang F, He J, Lin X H, et al. Complete genome sequence of the shrimp white spot bacilliform virus[J]. Journal of Virology, 2001, 75(23): 11811-11820 DOI: 10.1128/JVI.75.23.11811-11820.2001 (0)
[158] 曾勇, 陆承平, 朱建中. cDNA芯片结合抑制性差减杂交技术构建对虾白斑综合征病毒表达基因和螯虾免疫相关基因文库[J]. 水产学报, 2006, 30(5): 690-694
Zeng Y, Lu C P, Zhu J Z. Construction the cDNA library of expression profiles of penaeid shrimp WSSV and immune genes of crayfish with suppression subtractive hybridization and cDNA chip[J]. Journal of Fisheries of China, 2006, 30(5): 690-694 (0)
[159] Wang B, Li F H, Xiang J H, et al. Three tetraspanins from Chinese shrimp, Fenneropenaeus chinensis, may play important roles in WSSV infection [J]. Journal of Fish Diseases, 2010, 33(1): 15-29 DOI: 10.1111/jfd.2009.33.issue-1 (0)
[160] Gui L, Wang B, Li F H, et al. Blocking the large extracellular loop (LEL) domain of FcTetraspanin-3 could inhibit the infection of white spot syndrome virus (WSSV) in Chinese shrimp, Fenneropenaeus chinensis [J]. Fish & Shellfish Immunology, 2012, 32(6): 1008-1015 (0)
[161] Li S H, Zhang X J, Sun Z, et al. Transcriptome analysis on chinese shrimp Fenneropenaeus chinensis during WSSV acute infection [J]. PLoS One, 2013, 8(3): e58627 DOI: 10.1371/journal.pone.0058627 (0)
[162] Li F H, Xiang J H. Recent advances in researches on the innate immunity of shrimp in China[J]. Developmental & Comparative Immunology, 2013, 39(1-2): 11-26 (0)
[163] 康桦华, 陆承平. 对虾白斑综合征病毒中国地方株变异区基因的比较[J]. 病毒学报, 2007, 23(6): 490-493
Kang H H, Lu C P. Comparison of variable region genes of shrimp white spot syndrome virus (WSSV) in different areas in China[J]. Chinese Journal of Virology, 2007, 23(6): 490-493 DOI: 10.3321/j.issn:1000-8721.2007.06.014 (0)
[164] 衣启麟, 王玲玲, 宋林生. 对虾白斑综合征及其免疫防控[J]. 生命科学, 2014, 26(9): 903-911
Yi Q L, Wang L L, Song L S. White spot syndrome in shrimp and its immunological prevention and control[J]. Chinese Bulletin of Life Sciences, 2014, 26(9): 903-911 (0)
[165] 姚迁会, 覃冰, 潘迎捷, 等. 对虾白斑综合征病毒囊膜蛋白VP53B原核表达及抗血清的制备[J]. 微生物学通报, 2015, 42(10): 1977-1983
Yao Q H, Qin B, Pan Y J, et al. Prokaryotic expression and serum preparation of envelope protein VP53B of white spot syndrome virus (WSSV)[J]. Microbiology China, 2015, 42(10): 1977-1983 (0)
[166] 邓康裕, 史晓丽, 张莹雪, 等. 中国明对虾caspase2基因克隆及其在抗白斑综合征病毒中的表达分析 [J]. 水产学报, 2016, 40(1): 119-127
Deng K Y, Shi X L, Zhang Y X, et al. cDNA cloning of caspase2 gene in Fenneropenaeus chinensis and its expression analysis in WSSV infection [J]. Journal of Fisheries of China, 2016, 40(1): 119-127 (0)
[167] 秦梦雪, 孙新颖, 万晓媛, 等. 2015年中国典型对虾养殖区WSSV流行株高变异区序列的分析比较[J]. 渔业科学进展, 2018, 39(2): 128-137
Qin M X, Sun X Y, Wan X Y, et al. Variable sequence comparison of WSSV regions from different parts of China in 2015[J]. Progress in Fishery Sciences, 2018, 39(2): 128-137 (0)
[168] He Y D, Zhang X B. Comprehensive characterization of viral miRNAs involved in white spot syndrome virus (WSSV) infection[J]. RNA Biology, 2012, 9(7): 1019-1029 DOI: 10.4161/rna.20741 (0)
[169] Huang T Z, Cui Y L, Zhang X B. Involvement of viral microRNA in the regulation of antiviral apoptosis in shrimp[J]. Journal of Virology, 2014, 88(5): 2544-2554 DOI: 10.1128/JVI.03575-13 (0)
[170] Liu C Z, Li F H, Sun Y M, et al. Virus-derived small RNAs in the penaeid shrimp Fenneropenaeus chinensis during acute infection of the DNA virus WSSV [J]. Scientific Reports, 2016, 6: 28678 DOI: 10.1038/srep28678 (0)
[171] 潘子豪, 杨政霖, 陆承平. 安徽地区克氏原螯虾白斑综合征的诊断及朔源[J]. 微生物学报, 2013, 53(5): 492-497
Pan Z H, Yang Z L, Lu C P. Diagnosis of white spot syndrome virus in farm crawfish in Anhui province and its epidemiological source[J]. Acta Microbiologica Sinica, 2013, 53(5): 492-497 (0)
[172] 兰江风, 代云佳, 林蠡. 养殖克氏原螯虾体内白斑综合征病毒的绝对定量分析[J]. 水产学报, 2016, 40(3): 318-325
Lan J F, Dai Y J, Lin L. Quantitative analysis of white spot syndrome virus in the tissues of cultured red swamp crayfish (Procambarus clarkii) [J]. Journal of Fisheries of China, 2016, 40(3): 318-325 (0)
[173] Shi X Z, Li X C, Wang S, et al. Transcriptome analysis of hemocytes and hepatopancreas in red swamp crayfish, Procambarus clarkii, challenged with white spot syndrome virus [J]. Invertebrate Survival Journal, 2010, 7(1): 119-131 (0)
[174] 何琦瑶, 汪开毓, 刘韬, 等. 湖北省潜江地区克氏原螯虾白斑综合征PCR诊断及组织病理学观察[J]. 水产学报, 2018, 42(1): 131-140
He Q Y, Wang K Y, Liu T, et al. Histopathological study and PCR detection of white spot syndrome virus from infected Procambarus clarkii [J]. Journal of Fisheries of China, 2018, 42(1): 131-140 (0)
[175] Xu L M, Wang T T, Li F, et al. Isolation and preliminary characterization of a new pathogenic iridovirus from redclaw crayfish Cherax quadricarinatus [J]. Diseases of Aquatic Organisms, 2016, 120(1): 17-26 DOI: 10.3354/dao03007 (0)
[176] 张治国, 丁苏芳, 汪洁, 等. 三角帆蚌瘟病的研究-Ⅱ. 三角帆蚌瘟病的病原—一种嵌砂样病毒[J]. 微生物学报, 1987, 27(2): 116-120
Zhang Z G, Ding S F, Wang J, et al. Studies on the mussel Hyriopsis cumingii Plague II. A new arenavirus is the pathogen of Hyriopsis cumingii Plague [J]. Acta Microbiologica Sinica, 1987, 27(2): 116-120 (0)
[177] 邵健忠, 项黎新, 毛树坚, 等. 三角帆蚌瘟病病毒的精细结构与基因组及多肽的研究[J]. 病毒学报, 1993, 9(2): 160-166
Shao J Z, Xiang L X, Mao S J, et al. Fine struture, genome and polypeptides of the mussel Hyriopsis cumingii plague virus [J]. Chinese Journal of Virology, 1993, 9(2): 160-166 (0)
[178] 王崇明, 王秀华, 宋晓玲, 等. 栉孔扇贝一种球形病毒的分离纯化及其超微结构观察[J]. 水产学报, 2002, 26(2): 180-184
Wang C M, Wang X H, Song X L, et al. Purification and ultrastructure of a spherical virus in cultured scallop Chlamys farreri [J]. Journal of Fisheries of China, 2002, 26(2): 180-184 (0)
[179] 付崇罗, 宋微波, 李赟, 等. 栉孔扇贝感染急性病毒性坏死症病毒的组织病理学与免疫荧光检测[J]. 微生物学报, 2004, 44(6): 741-744
Fu C L, Song W B, Li Y, et al. Histopathological research and immunofluorescence of AVND virus infection in cultured scallop Chlamys farreri [J]. Acta Microbiologica Sinica, 2004, 44(6): 741-744 DOI: 10.3321/j.issn:0001-6209.2004.06.008 (0)
[180] Tang B J, Liu B Z, Wang X M, et al. Physiological and immune responses of Zhikong Scallop Chlamys farreri to the acute viral necrobiotic virus infection [J]. Fish & Shellfish Immunology, 2010, 29(1): 42-48 (0)
[181] 陆宏达, 范丽萍, 薛美. 中华绒螯蟹小核糖核酸病毒病及其组织病理学[J]. 水产学报, 1999, 23(1): 61-68
Lu H D, Fan L P, Xue M. A picornavirus disease and histopathology of Eriocheir sinensis [J]. Journal of Fisheries of China, 1999, 23(1): 61-68 (0)
[182] 张叔勇, 张建红, 黄灿华, 等. 中华绒螯蟹二株呼肠孤病毒的初步研究[J]. 中国病毒学, 2002, 17(3): 263-265
Zhang S Y, Zhang J H, Huang C H, et al. Preliminary studies on two strains of reovirus from crab Eriocheir sinensis [J]. Virologica Sinica, 2002, 17(3): 263-265 (0)
[183] Guo Z X, He J G, Xu H D, et al. Pathogenicity and complete genome sequence analysis of the mud crab dicistrovirus-1[J]. Virus Research, 2013, 171(1): 8-14 DOI: 10.1016/j.virusres.2012.10.002 (0)
[184] Schäperclaus W. Die schädigungen der deutschen fischerei durch fischparasiten und fischrankheiten[J]. Fisch Zig, 1938, 41: 256-270 (0)
[185] Tidona C, Darai G. The springer index of viruses [M]. New York:Springer, 2011. (0)
[186] Huang Q Y. Aquaculture Animal Diseases[M]. Shanghai: Shanghai Science and Technology Press(in Chinese). 1993. (0)
[187] Lu ZK, Concise Aquaculture Encyclopaedia in China[M]. Beijing: China Agriculture Press, 2001. (0)
[188] Zhan W B. Aquatic Animal Diseases[M]. Beijing: China Agriculture Press, 2004. (0)
[189] Huang QY. Technology of freshwater fish disease prevention and control[M]. Beijing: China Agriculture Press, 2005. (0)
[190] Zhang Q Y, Gui J F. Aquatic Virology[M]. Beijing: Higher Education Press, 2008. (0)
[191] Xia C. Comprehensive guide of the veterinary[M]: Beijing: China Agriculture Press, 2011. (0)
[192] Zhang Q Y, Gui J F. Atlas of Aquatic Viruses and Viral Diseases[M]. Beijing: Science Press, 2012. (0)
[193] 郑德崇, 黄琪琰, 蔡完其, 等. 草鱼出血病的组织病理研究[J]. 水产学报, 1986, 10(2): 151-160
Zheng DC, Huang QY, Cai WQ, et al. Histopathological studies on the hemorrhage disease of grass carp[J]. Journal of Fisheries of China, 1986, 10(2): 151-160 (0)
[194] 林蠡, 黄剑南, 翁少萍, 等. 赤点石斑鱼病毒性神经坏死症的组织病理和电镜观察[J]. 水产学报, 2005, 29(4): 519-523
Lin L, Guang J N, Weng S P, et al. Histopathological examination and electron microscopy observation of viral nervous necrosis in red-spotted grouper, Epinephelus akaara [J]. Journal of Fisheries of China, 2005, 29(4): 519-523 (0)
[195] 邵健忠, 项黎新, 李亚南, 等. 三角帆蚌瘟病的组织病理研究[J]. 水产学报, 1995, 19(1): 1-7
Shao J Z, Xiang L X, Li Y N, et al. Histopathological studies on the plague disease of Hyriopsis cumingii Lea [J]. Journal of Fisheries of China, 1995, 19(1): 1-7 (0)
[196] 王崇明, 王秀华, 艾海新, 等. 栉孔扇贝大规模死亡致病病原的研究[J]. 水产学报, 2004, 28(5): 547-553
Wang C M, Wang X H, AI H X, et al. The viral pathogen of massive mortality in Chlamys farrei [J]. Journal of Fisheries of China, 2004, 28(5): 547-553 (0)
[197] 朱春华, 刘荭, 刘晓东, 等. 中华鳖虹彩病毒单克隆抗体的制备及其抗原表位的初步分析[J]. 水产学报, 2009, 33(5): 840-846
Zhu C H, Liu H, Liu X D, et al. Preparation and epitope analysis of monoclonal antibodies against soft-shelled turtle iridovirus (STIV)[J]. Journal of Fisheries of China, 2009, 33(5): 840-846 (0)
[198] 余泽辉, 耿毅, 汪开毓, 等. 四川地区一株传染性造血器官坏死病毒的分离鉴定及系统发育分析[J]. 水产学报, 2015, 39(5): 745-753
Yu Z H, Gen Y, Wang K Y, et al. Isolation and identification of an infectious hematopoietic necrosis virus isolate and phylogenetic analyses from Sichuan Province[J]. Journal of Fisheries of China, 2015, 39(5): 745-753 (0)
[199] 王著希, 周胜, 黄友华, 等. 细胞骨架蛋白actin参与石斑鱼虹彩病毒SGIV释放[J]. 水产学报, 2017, 41(8): 1319-1327
Wang Z X, Zhou S, Huang Y H, et al. Actin filament involved in the release of SGIV from host cells[J]. Journal of Fisheries of China, 2017, 41(8): 1319-1327 (0)
[200] 韩琳, 王秀华, 杨冰, 等. 一例日本囊对虾暴发性死亡的病原分析[J]. 水产学报, 2018, 42(3): 431-441
Han L, Wang X H, Yang B, et al. Analysis of pathogen in an outbreak death of Marsupenaeus japonicus [J]. Journal of Fisheries of China, 2018, 42(3): 431-441 (0)
[201] Gao F X, Lu W J, Wang Y, et al. Differential expression and functional diversification of diverse immunoglobulin domain-containing protein (DICP) family in three gynogenetic clones of gibel carp[J]. Developmental & Comparative Immunology, 2018, 84: 396-407 (0)
[202] Liu J, Yu C, Gui J F, et al. Real-Time dissecting the entry and intracellular dynamics of single reovirus particle[J]. Frontiers in Microbiology, 2018, 9: 2797 DOI: 10.3389/fmicb.2018.02797 (0)
[203] Yang M C, Shi X Z, Yang H T, et al. Scavenger receptor c mediates phagocytosis of white spot syndrome virus and restricts virus proliferation in shrimp[J]. PLoS Pathogens, 2016, 12(12): e1006127 DOI: 10.1371/journal.ppat.1006127 (0)
[204] Li H, Yin B, Wang S, et al. RNAi screening identifi es a new Toll from shrimp Litopenaeus vannamei that restricts WSSV infection through activating Dorsal to induce antimicrobia l peptides [J]. PLoS Pathogens, 2018, 14(9): e1007109 DOI: 10.1371/journal.ppat.1007109 (0)
[205] Zhang Q Y, Gui J F. Diversity, evolutionary contribution and ecological roles of aquatic viruses[J].Science China. Life Sciences, 2018,61(12):1486-1502. (0)
[206] 桂建芳, 包振民, 张晓娟. 水产遗传育种与水产种业发展战略研究[J]. 中国工程科学, 2016, 18(3): 8-14
Gui J F, Bao Z M, Zhang X J. Development strategy for aquaculture genetic breeding and seed industry[J]. Engineering Sciences, 2016, 18(3): 8-14 DOI: 10.3969/j.issn.1009-1742.2016.03.003 (0)
[207] Gui J F, Tang Q S, Li Z J, et al. Aquaculture in China: Success Stories and Modern Trends[M]. UK Chichester: Wiley-Blackwell, 2018. (0)
A brief review of aquatic animal virology researches in China
GUI Lang1, ZHANG Qiya1,2,3     
1. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai    201306, China;
2. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan    430072, China;
3. Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, Wuhan    430072, China
Abstract: This review briefly introduced representative research results on the aquatic animal virology in China during the past several decades, including fish viruses, shrimp viruses, amphibian and reptile viruses and so on. Moreover, current trends in development of aquatic animal virology were further discussed. It can help to improve comprehensive understanding of the current state and development of the aquatic animal virology studies.
Key words: aquatic animal virology    fish viruses    shrimp viruses    amphibian and reptile viruses    disease diagnosis and prevention