文章编号:1000-0615(2019)12-2501-10

DOI: 10.11964/jfc.20181211569

个体差异对西沙群岛海域鸢乌贼角质颚外部形态变化的影响

陈子越1, 陆化杰1.2.3.4.5*, 童玉和6, 刘 维6, 张 旭1, 陈新军1.2.3.4.5

(1. 上海海洋大学海洋科学学院, 上海 201306;

2. 上海海洋大学,国家远洋渔业工程技术研究中心,上海 201306;

3. 上海海洋大学,大洋渔业资源可持续开发省部共建教育部重点实验室,上海 201306;

4. 上海海洋大学,农业农村部大洋渔业开发重点实验室,上海 201306;

5. 上海海洋大学,农业农村部大洋渔业资源环境科学观测实验站,上海 201306;

6. 海南省海洋与渔业科学研究院,海南海口 570100)

摘要:角质颚结构稳定、信息量大,是研究头足类渔业生物学的重要材料。根据2017年 5—8月我国灯光罩网渔船在中国南海西沙群岛海域采集的860尾鸢乌贼样本,研究了个 体差异对鸢乌贼角质颚外部形态变化的影响。结果显示,上头盖长(UHL)、上脊突长 (UCL)、上喙宽(URW)、上侧壁长(ULWL)、下头盖长(LHL)、下脊突长(LCL)、下喙长 (LRL)和下侧壁长(LLWL)可作为外形特征因子描述鸢乌贼角质颚的外形变化。方差分析 (ANOVA)和最小显著性差异法(LSD)结果显示,主要外形特征因子在不同性别、不同胴 长组和不同性成熟度间均存在显著性差异,但主要外形特征因子与脊突长(CL)的比值基 本稳定。研究表明,在个体生长过程中,角质颚各区的比例基本稳定,胴长121~150 mm 和性腺成熟度Ⅲ期可能是鸢乌贼角质颚外形生长的拐点。

关键词: 菡乌贼; 角质颚; 个体差异; 外形变化; 中国南海; 西沙群岛海域 中图分类号: O13; S 965.3 文献标志码: A

鸢乌贼(Sthenoteuthis oualaniensis), 俗称"赤 鱿、南鱿",隶属柔鱼科(Ommastrephidae)、鸢乌 贼属(Sthenoteuthis), 广泛分布于印度洋、太平洋 的热带及亚热带海域,种群结构复杂、洄游范 围大、资源丰富^[1-3],是我国南海最重要的经济 头足类资源,潜在资源评估量可达150万t^[4],开 发潜力巨大。角质颚是鸢乌贼主要的摄食器官, 具有结构稳定、抗腐蚀、信息储存量大等特点⁵³, 是研究头足类年龄与生长[6-7]、摄食生态^[8]、种类 鉴定[9]、群体划分[10]和资源评估[11-12]的重要材 料。国内外学者分别对西北印度洋和赤道附近 等海域鸢乌贼角质颚的生长变化和色素沉积进 行了研究[13-14],而针对中国南海鸢乌贼角质颚的 研究则较为欠缺[15]。本研究根据2017年5—8月我 国灯光罩网渔船在中国南海西沙群岛海域生产 调查期间采集的鸢乌贼样本,分析了个体差异

对其角质颚外形变化的影响,为后续利用角质 颚研究其年龄生长、种群结构等提供参考依据。

1 材料与方法

1.1 样本来源

样品采集时间为2017年5—8月,采集海域 为12°18′~18°46′N、110°10′~115°58′E(图1), 由"琼三亚渔72106"和"琼三亚渔72060"灯光罩 网渔船采集。每个站点每天从捕获鸢乌贼渔获 物中随机取样20尾,共采集860尾鸢乌贼样本, 样本信息见表1。

1.2 研究方法

生物学测定与角质颚提取 将采集的鸢 乌贼带回实验室后解冻,并进行渔业生物学数

收稿日期: 2018-12-10 修回日期: 2019-04-17

资助项目:国家自然科学基金(41506184);国家科技支撑计划(2013BAD13B06);海南省省属科研院所技术开发研究专项 (TV45987);公益性行业(农业)科研专项(201403008)

通信作者:陆化杰, E-mail: hjlu@shou.edu.cn

图1 调查采样图

Fig. 1 Site of investigations and samples of *S. oualaniensis*

表1 鸢乌贼调查采样基本信息

 Tab. 1
 Loadings of information of survey sampling of

 S
 curdaniansis

	5. ouaramensis						
采样时间		间	样本数/尾	胴长范围/mm	体质量范围/g		
time of sampling		mpling	quantities of samples	range of ML	range of BW		
	5月	May	190	11~150	8~53		
	6月	June	230	15~167	18~103		
	7月	July	210	22~193	30~220		
	8月 Augu	ıst	230	20~235	44~752		

据测定,包括胴长(mantle length, ML)、体质量 (body weight, BW);对性别、性成熟度进行目测 和鉴定^[16];对角质颚进行提取、编号和保存^[17-18], 并对其外部形态参数进行测量。其中ML测定精 确至1 mm, BW测定精确至1 g,角质颚外形测量 精确到0.01 mm。共提取完整角质颚样本645对 (雌250对、雄395对),雌、雄鸢乌贼样本的胴长 范围分别为11~235 mm和11~138 mm,体质量范 围分别为8~752 g和8~127 g。

角质颚外部形态参数测量 沿水平和垂 直两个方向利用游标卡尺进行测量,对角质颚 的上头盖长(upper hood length, UHL)、上脊突长 (upper crest length, UCL)、上喙长(upper rostrum length, URL)、上喙宽(upper rostrum width, URW)、上侧壁长(upper lateral wall length, ULWL)、上翼长(upper wing length, UWL)、下头 盖长(lower hood length, LHL)、下脊突长(lower crest length, LCL)、下喙长(lower rostrum length, LRL)、下喙宽(lower rostrum width, LRW)、下侧 壁长(lower lateral wall length, LLWL)和下翼长 (lower wing length, LWL)等12项外部形态参数进 行测量(图2),测量结果精确至0.01 mm。

1.3 数据分析

分上下颚对鸢乌贼角质颚12个外部形态参数进行主成分分析,筛选出可表征角质颚长度和宽度的外形特征因子。

利用方差分析法(ANOVA)分析鸢乌贼角质 颚外形变化是否存在不同性别、不同胴长组和 不同成熟度间的差异,对存在性别间差异的外 形特征因子分性别进行研究。

利用最小显著性差异法(LSD)进行多重比较,分析不同胴长组和不同性腺成熟度对鸢乌贼角质颚外形特征因子的影响^[17-18]。

将不同部位的外形特征因子与脊突长的比 值作为各区变化指标,研究不同性别、不同胴 长和不同性腺成熟度对各区整体变化的影响^[18-19]。

2 结果

2.1 角质颚外部形态参数

经测量,雄性样本角质颚各外部形态参数: UHL为4.31~12.59 mm,UCL为4.23~13.97 mm, URL为1.08~4.58 mm,URW为1.52~4.86 mm, ULWL为1.89~7.04 mm,UWL为1.23~5.60 mm, LHL为1.08~3.99 mm,LCL为2.11~7.07 mm, LRL为1.04~4.36 mm,LRW为1.23~4.97 mm, LLWL为3.28~10.41 mm,LWL为1.98~6.55 mm; 雌性各参数:UHL为3.82~4.49 mm,UCL为 4.58~14.64 mm,URL为1.23~5.16 mm,URW为 1.23~5.67 mm,ULWL为1.99~7.75 mm,UWL为 1.02~4.52 mm,LHL为1.11~5.09 mm,LCL为 2.11~7.87 mm,LRL为1.02~4.33 mm,LRW为 1.30~5.18 mm,LLWL为2.99~12.20 mm,LWL为 1.89~6.15 mm。

2.2 鸢乌贼角质颚外部形态特征

鸢乌贼角质颚系"地包天"式嵌合,由下颚 包嵌上颚,与普通鸟喙的嵌合式相反。喙部作 为生长起始点色素沉着最多、硬度最大、颜色 最深。色素沉着沿着头盖、翼部、脊突和侧壁 方向逐渐变少,颜色逐渐变淡,硬度逐渐减小。 上颚的UHL、UCL和URL均大于下颚的LHL、

图 2 角质颚外部形态参数测量示意图

Fig. 2 Scheme of morphometric measurements of S. oualaniensis beak

LCL和LRL,但上颚的UWL较下颚的LWL短。上 颚喙部下缘与翼部形成一夹角即颚角,且上颚颚 角远小于下颚颚角,下颚头盖与脊突连接处具一 明显缺刻,上喙两侧与上翼两侧均具一缺刻(图3)。

(a) 上颚, (b) 下颚

Fig. 3 Morphometric description of S. oualaniensis beak

(a) upper beak, (b) lower beak

2.3 主成分分析

对上、下颚共12个外部形态参数进行主成 分分析,结果显示,对于上颚,第一主成分的 贡献率为79.79%,而第一、第二主成分的累计贡 献率达到了87.70%。UHL、UCL、URL、UWL、 URW和ULWL均与第一主成分呈正相关,载荷系 数均在0.85以上,UHL达到了0.93,因此第一主 成分可作为上颚各区长度特征的代表;UHL、 UWL和ULWL与第二主成分呈正相关,而UCL、 URL和URW则呈负相关;UHL、UCL和ULWL与 第三主成分呈正相关,URL则呈较大的负相关; UCL和UWL与第四主成分呈正相关,ULWL与第 四主成分呈较大负相关。综上所述,第一、第 二主成分可成为鸢乌贼角质颚上颚各区长度特 征的代表(表2)。

对于下颚,主成分分析表明第一主成分的 贡献率为81.19%,第一、第二主成分的累计贡献 率达到了86.64%。LHL、LCL、LRL、LWL、 LRW和LLWL均与第一主成分呈正相关,载荷系 数均为0.87以上,其中LCL达到0.94,因此,第 一主成分可作为下颚各区长度特征的代表; LHL、LCL和LLWL与第二主成分呈正相关,而 LRL、LRW和LWL则呈负相关;LLWL和LWL与 第三主成分呈正相关,LHL则呈较大负相关; LHL、LRL、LRW和LWL与第四主成分呈正相 关,LLWL与第四主成分呈较大负相关。综上所

表 2 鸢乌贼角质颚上颚6个形态参数6个主成分负荷值和贡献率

Tab. 2 Loadings of six principal components for 6 morphometric parameters of S. oualaniensis upper beak

			主成分分析	principal compone	nt	
外形麥效 morphologic parameters	1	2	3	4	5	6
上头盖长 UHL	0.93	0.01	0.26	-0.13	-0.19	-0.13
上脊突长 UCL	0.85	-0.38	0.29	0.16	0.09	0.08
上喙长 URL	0.91	-0.17	-0.31	-0.03	-0.16	0.14
上喙宽 URW	0.92	-0.18	-0.27	-0.05	0.15	-0.16
上侧壁长 ULWL	0.89	0.33	0.08	-0.26	0.13	0.10
上翼长 UWL	0.85	0.40	-0.04	0.34	-0.01	-0.02
贡献率/% contribution rate	79.79	7.91	5.40	3.82	1.75	1.33
累计贡献率/% cumulative rate	79.79	87.70	93.10	96.92	98.67	100

述,第一、第二主成分可成为鸢乌贼角质颚下 颚各区长度特征的代表(表3)。

综上所述,选取鸢乌贼角质颚的UHL、UCL、 URW、ULWL、LHL、LCL、LRL和LLWL 8个外 形特征因子代替12个外部形态参数来研究角质颚 外部形态特征。

2.4 不同性别之间角质颚的差异

ANOVA分析表明,UHL(F=5.156, P=0.024)、 UCL(F=4.813, P=0.029)和LHL(F=6.170, P=0.013)3项外形特征因子存在性别间显著性差 异(P<0.05),而URW(F=0.030, P=0.862)、ULWL (F=2.452, P=0.118)、LCL(F=3.529, P=0.061)、 LRL(F=0.081, P=0.777)、LLWL(F=2.552, P= 0.111)5项特征因子不存在性别间显著性差异。 因此,将UHL、UCL和LHL3项外形特征因子分 不同性别开展研究,而URW、ULWL、LCL、 LRL和LLWL等5项因子不分性别进行研究。

2.5 不同胴长组之间角质颚的差异

以30 mm作为间距,将鸢乌贼胴长划分为 4组,分不同性别研究UHL、UCL和LHL变化与 胴长的关系;不分性别研究URW、ULWL、LCL、 LRL和LLWL变化与胴长的关系。

对于雄性样本,ANOVA结果显示,UHL(F= 67.107,P=0.000)、UCL(F=44.667,P=0.000)和 LHL(F=36.331,P=0.000)在4个胴长组间均存在极 显著差异(P<0.01)。LSD分析表明,3个特征因子 只有胴长组31~60 mm与61~90 mm间不存在显著 性差异(P>0.05),胴长组31~60 mm与91~120 mm和121~150 mm间;61~90 mm与91~120 mm和 121~150 mm间;91~120 mm与121~150 mm间均存

表 3 鸢乌贼角质颚下颚6个形态参数6个主成分负荷值和贡献率

山亚会业	主成分分析 principal component					
外形参数 morphologic parameters	1	2	3	4	5	6
下头盖长 LHL	0.87	0.38	-0.20	0.21	0.03	0.09
下脊突长 LCL	0.94	0.13	-0.04	-0.15	0.02	-0.29
下喙长 LRL	0.90	-0.28	-0.17	.011	-0.27	-0.01
下喙宽 LRW	0.90	-0.29	-0.11	0.02	0.29	0.04
下侧壁长 LLWL	0.92	0.07	0.07	-0.33	-0.07	0.18
下翼长 LWL	0.87	-0.01	0.46	0.17	-0.01	-0.01
贡献率/% contribution rate	81.19	5.45	4.93	3.63	2.71	2.09
累计贡献率/% cumulative rate	81.19	86.64	91.57	95.20	97.91	100

 Tab. 3 Loadings of six principal components for 6 morphometric parameters of S. oualaniensis lower beak

在极显著差异(P<0.01)(图4-a)。

对于雌性样本,UHL(F=38.197, P=0.000)、 UCL(F=26.131, P=0.000)和LHL(F=15.566, P=0.000)在4个胴长组间均呈极显著差异(P<0.01)。

图 4 不同胴长组之间鸢乌贼角质颚 外形特征因子变化

(a)雄性样本,(b)雌性样本,(c)全部样本;LSD法分析,不同组 别间不同字母表示差异显著(P<0.05),下同

Fig. 4 Changes of morphometric characterization factors of beak for *S. oualaniensis* at different mantle length groups

(a) males, (b) females, (c) males and females, different letters in different groups mean significant difference using LSD method (P<0.05); the same below

LSD法分析表明,3个特征因子,只有胴长31~60 mm与61~90 mm间不存在显著性差异(P>0.05), 胴长组61~90 mm与91~120 mm和121~150 mm间,91~120 mm与121~150 mm间均存在显著性差异 (P<0.05)(图4-b)。

对于无性别差异的外形特征因子,ANOVA 结果显示,URW(F=60.873,P=0.000)、ULWL (F=49.590,P=0.000)、LCL(F=90.686,P=0.000)、 LRL(F=68.489,P=0.000)和LLWL(F=88.447, P=0.000)5项外形特征因子在4个胴长组间均存在 极显著差异(P<0.01)。LSD法分析发现,5项特征 因子,只有胴长组31~60 mm与61~90 mm间不存 在显著性差异,胴长组61~90 mm与91~120 mm和 121~150 mm间;91~120 mm与121~150 mm间均存 在极显著差异(P<0.01)(图4-c)。总体而言,所有 特征因子均随着鸢乌贼胴长生长而逐渐增大, 角质颚外形也逐渐增大,121~150 mm胴长组, 可能是鸢乌贼角质颚外部形态生长的拐点。

2.6 不同性成熟度之间角质颚的差异

对于雄性样本,ANOVA结果显示,UHL(F= 7.367,P=0.000)、UCL(F=7.637,P=0.000)和 LHL(F=6.348,P=0.001)均存在性成熟度间的显 著性差异(P<0.05)。LSD法分析发现,3个特征因 子在性成熟度 I 期与Ⅲ期、I 期与Ⅳ期、 I 期 与 V 期, Ⅱ期与Ⅲ期、 I 期与Ⅳ期、 I 期 与 V 期间均存在显著性差异(P<0.05),而 I 期与 Ⅱ期、Ⅲ期与Ⅳ期、Ⅲ期与Ⅴ期、Ⅳ期与Ⅴ期 间则不存在显著性差异(P>0.05)(图5-a)。

对于雌性样本,ANOVA结果显示,UHL(F= 4.359, P=0.014)、UCL(F=5.888, P=0.003)和 LHL(F=3.434, P=0.034)均存在性成熟度间的显 著性差异(P<0.05)。LSD法分析发现,3项特征因 子仅在性成熟度 I 期与Ⅲ期间存在显著性差异 (P<0.05); Ⅱ期与Ⅲ期间不存在显著性差异 (P>0.05)(图5-b)。

对于无性别差异的参数,ANOVA结果显示,URW(F=11.700, P=0.000)、ULWL(F=6.699, P=0.000)、LCL(F=8.231, P=0.000)、LRL(F=6.079, P=0.000)和LLWL(F=10.125, P=0.000)均存在性成 熟度间的极显著差异(P<0.01)。LSD法分析发现,5个特征因子 I 期与Ⅲ期、I 期与Ⅳ期、 I 期与Ⅴ期,Ⅱ期与Ⅲ期、Ⅱ期与Ⅳ期、Ⅱ期

与V期间均存在显著性差异(P<0.05),而 I 期与 Ⅱ期、Ⅲ期与Ⅳ期、Ⅲ期与Ⅴ期、Ⅳ期与Ⅴ期 间则不存在显著性差异(P>0.05)(图5-c)。总体而 言,随着性腺发育成熟,8个特征因子日益生 长,且在Ⅱ至Ⅲ期(成熟期)生长速率较快,Ⅳ期 和Ⅴ期时生长平稳,性成熟度Ⅲ期时,可能是 南海鸢乌贼角质颚外部形态生长的拐点。

2.7 角质颚不同部位外形特征因子与脊突长的比值关系

对于上颚, ANOVA结果显示, UHL/UCL、 URL/UCL、URW/UCL、ULWL/UCL和 UWL/UCL均不存在不同性别不同胴长组和不同 性成熟度间的显著性差异(P>0.05)。UHL/UCL、 URL/UCL、URW/UCL、ULWL/UCL和UWL/UCL 平均值分别为91.24%、31.72%、37.25%、58.37%和 30.89%,角质颚上颚各部与脊突长的比值随着鸢 乌贼胴长的增加基本维持稳定(图6)。对于下 颚, ANOVA结果显示, LHL/LCL、LRL/LCL、 LRW/LCL、LLWL/LCL和LWL/LCL也均不存在不 同性别和不同胴长组和不同性成熟度间的显著 性差异(P>0.05)。LHL/LCL、LRL/LCL、 LRW/LCL、LLWL/LCL和LWL/LCL的平均值分别 为53.95%、48.12%、62.64%、156.40%、 86.68%,角质颚下颚各部与脊突长的比值随着鸢 乌贼胴长的增加基本维持稳定(图6)。

3 讨论

3.1 角质颚间的差异及外形特征因子

与枪乌贼类、蛸类、乌贼类对比, 西沙群岛 海域鸢乌贼角质颚其喙部较长,下颚颚角较 大, 翼部、侧壁较宽, 是与其他头足类进行种类鉴 别的重要依据^[20]。同属柔鱼科的茎柔鱼(Dosidicus gigas)上喙两侧与上翼两侧交接处的缺刻较鸢乌 贼浅,下颚脊突末端独具一较小凹陷^[21],其角质 颚外形特征因子为UHL、UCL、ULWL、LCL、 LRL和LLWL^[17]; 阿根廷滑柔鱼(Illex argentinus)上 颚侧壁长度较长,下颚颚角较大,头盖与脊突 间夹角较大^[21],外形特征因子为UHL、UCL、 UWL、LHL、LCL和LWL^[18]; 北太平洋柔鱼 (Ommastrephes bartramii)角质颚头盖弧度较小, 下颚颚角较大,喙部较平直^[21],外形特征因子为 UHL、UCL、LCL和LWL^[22];东太平洋赤道海域 的鸢乌贼角质颚外形特征因子为UHL、UCL、 ULWL、LCL、LRL和LLWL^[13]。不同柔鱼类角质 颚外形特征因子间存在一定的差异性,但都包 含UHL、UCL和LHL、LCL等几个重要的特征因 子(表4),间接为利用角质颚特征因子进行头足 类的种类鉴定提供了依据^[20,23]。

3.2 不同性别间角质颚的差异

本研究中仅UHL、UCL和LHL 3项特征因子

Fig. 6 Relationship between ratio of length of each dome to crest length and mantle length of S.oualaniensis

表 4 4种不同头足类角质颚外形特征因子

 Tab. 4
 Morphometric characterization factors of beak of

 4
 appendix of combalaneds

4 species of cephalopous				
和迷	角质颚外形特征因子			
anaging of Conholonoda	morphometric characterization			
species of Cephalopous	factors of beak			
茎柔鱼	UHL, UCL, ULWL, LCL, LRL,			
D. gigas ^[17]	LLWL			
阿根廷滑柔鱼	UHL、UCL、UWL、LHL、LCL、			
I. argentinus ^[18]	LWL			
北太平洋柔鱼	UHL, UCL, LCL, LWL			
O. bartramii ^[22]				
鸢乌贼(赤道)	UHL、UCL、ULWL、LCL、LRL、			
S. oualaniensis	LLWL			
(equatorial waters)[13]				
鸢乌贼(南海)	UHL、UCL、URW、ULWL、LHL、			
S. oualaniensis	LCL, LRL, LLWL			
(South China Sea)				

存在性别间的显著性差异(P<0.05),且雌性外形特征因子大于雄性;其余URW、ULWL、LCL、 LRL和LLWL 5项特征因子间不存在性别间的显 著性差异(P>0.05)。其他研究表明,太平洋褶柔 鱼(Todarodes pacificus)^[24]、阿根廷滑柔鱼^[18]、秘 鲁茎柔鱼^[17]、北太平洋柔鱼^[22]和东太平洋鸢乌贼^[13] 的角质颚外形特征因子均存在性别间显著性差 异,与本研究中的UHL、UCL和LHL 3项因子结 果相同,与其他5项特征因子结果不同。这可能 与它们隶属于不同种类或同一种类生活在不同 海域有关^[25],也可能与采样方法有关,如西北印 度洋鱿钓作业采集的鸢乌贼样本雌雄比例悬殊^[26], 可能会对研究结果有一定的影响,而本研究采 用灯光罩网进行采样作业,雌雄样本比例适中,研究结果应更为全面。

3.3 不同胴长组间角质颚的差异

双柔鱼(Nototodarus sloanii)^[27]、茎柔鱼^[17]、 阿根廷滑柔鱼^[18]等大洋性头足类的角质颚外形特 征因子长度均随着胴长的增加而增加,茎柔鱼 和阿根廷滑柔鱼在幼体阶段的角质颚外形特征 因子生长速率较快^[17-18]。本研究表明,西沙群岛 海域鸢乌贼角质颚在胴长组91~120 mm和121~150 mm时生长速率较快,150 mm以后生长相对缓 慢,推断胴长121~150 mm可能是其角质颚外形 生长的拐点。通常头足类角质颚外形生长随着 胴长增加而增加,且幼体阶段生长速率较快, 当胴长生长至一定阶段后,角质颚外形生长速 率变缓^[17-18],本研究结果刚好符合这一规律。

3.4 不同性成熟度间角质颚的差异

研究表明,茎柔鱼^[17]、阿根廷滑柔鱼^[18]的角 质颚外形特征因子在性成熟度Ⅰ、Ⅱ期时生长 较快,Ⅲ期后生长速率变缓。本研究中,除了 雌性缺少Ⅳ期和Ⅴ期样本外,其余样本角质颚 外形特征因子Ⅰ期与Ⅲ期、Ⅰ期与Ⅳ期、Ⅰ期 与Ⅴ期、Ⅱ期与Ⅲ期、Ⅱ期与Ⅳ期、Ⅱ期与 Ⅴ期间均存在显著性差异,而Ⅰ期与Ⅱ期、 Ⅲ期与Ⅳ期、Ⅲ期与Ⅴ期、Ⅳ期与Ⅴ期间则不 存在显著性差异,Ⅲ期可能是其角质颚外形生 长的拐点。这与阿根廷滑柔鱼^[18]、茎柔鱼^[17]、柔鱼^[2] 的研究结果基本相同。本研究中,由于雌性样 本缺少Ⅳ期及以后的样本,可能会对结果有一 定的影响,但总体趋势基本准确。后续研究中 将不断扩大采样范围,完善相关研究。

3.5 不同外形特征因子与脊突比值

8个莺乌贼角质颚外形特征因子与对应脊突 长比值基本稳定,说明随着鸢乌贼个体的生 长,虽然角质颚外形逐步增长,但各区的生长 结构比例基本不变,这与阿根廷滑柔鱼^[18]、秘鲁 茎柔鱼^[17]、北太平洋柔鱼^[22]、夏威夷双柔鱼(*N. hawaiiensis*)和玻璃乌贼(*Hyaloteuthis pelagica*)^[21]的 研究结果基本相同。相关研究表明,UCL和LCL 可分别作为上、下角质颚在水平方向参照生长 的标志^[22],各外形特征因子与其的比值可作为头 足类种类与种群鉴定的依据,虽然不同种类的 比值均较为稳定,但由于其数值不同,可为划 分和鉴定头足类提供科学依据。

4 结论

本研究开展了个体差异(不同性别、不同胴 长组和不同性腺成熟度)对西沙群岛海域鸢乌贼 角质颚外部形态变化影响的研究,为利用角质 颚外部形态研究群体划分和种类鉴定提供了科 学依据,为后续利用角质颚生长纹研究鸢乌贼 年龄与生长奠定了基础。后续可开展角质颚微 化学研究探索其分布与洄游,还可开展同位素 特性研究,探讨鸢乌贼的摄食特性,深入研究 鸢乌贼的渔业生物、生态学,为该资源的科学 管理和可持续开发提供科学依据。

参考文献:

- [1] 王尧耕,陈新军.世界大洋性经济柔鱼类资源及其渔业[M].北京:海洋出版社,2005:284-295.
 Wang Y G, Chen X J. The resources and biology of economic oceanic squid in the world[M]. Beijing: China Ocean Press, 2005: 284-295(in Chinese).
- [2] 陈新军, 刘必林, 王尧耕. 世界头足类[M]. 北京: 海洋 出版社, 2009: 312-313.
 Chen X J, Liu B L, Wang Y G. Cephalopods of world[M]. Beijing: China Ocean Press, 2009: 312-313(in Chinese).
- [3] 董正之. 世界大洋经济头足类生物学[M]. 济南: 山东 科学技术出版社, 1991: 91-94.
 Dong Z Z. Biology of the economic species of Cephalopods in the world oceans[M]. Jinan: Shandong Science and Technology Press, 1991: 91-94(in Chinese).
- [4] 张鹏,杨吝,张旭丰,等.南海金枪鱼和鸢乌贼资源开发现状及前景[J].南方水产,2010,6(1):68-74.
 Zhang P, Yang L, Zhang X F, *et al.* The present status and prospect on exploitotion of tuna and squid fishery resources in South China Sea[J]. South China Fisheries Science, 2010, 6(1): 68-74(in Chinese).
- [5] Clarke M R. The identification of cephalopod 'beaks' and the relationship between break size and total body weight[J]. Zoology, 1962, 8(10): 419-480.
- [6] Hernández-López J L, Castro-Hernández J L, Hernández-García V. Age determined from the daily deposition of concentric rings on common octopus (*Octopus vulgaris*) beaks[J]. Fishery Bulletin, 2001, 99(4): 679-684.
- [7] Raya C P, Hernández-González C L. Growth lines within the beak microstructure of the octopus *Octopus vulgaris* Cuvier, 1797[J]. South African Journal of Marine Science, 1998, 20(1): 135-142.

- [8] Cherel Y, Hobson K A. Stable isotopes, beaks and predators: a new tool to study the trophic ecology of cephalopods, including giant and colossal squids[J].
 Proceedings: Biological Sciences, 2005, 272(1572): 1601-1607.
- [9] Martínez P, Sanjuan A, Guerra A. Identification of *Illex coindetii*, *I. illecebrosus* and *I. argentinus* (Cephalopoda: Ommastrephidae) throughout the Atlantic Ocean; by body and beak characters[J]. Marine Biology, 2002, 141(1): 131-143.
- [10] 陆化杰,陈新军,方舟.西南大西洋阿根廷滑柔鱼2个 不同产卵群间角质颚外形生长特性比较[J].中国海洋 大学学报,2012,42(10):33-40.

Lu H J, Chen X J, Fang Z. Comparison of the beak morphologic growth characteristics between two spawning populations of *Illex argentinus* in southwest Atlantic Ocean[J]. Periodical of Ocean University of China, 2012, 42(10): 33-40(in Chinese).

- [11] Lu C C, Ickeringill R. Cephalopod beak identification and biomass estimation techniques: tools for dietary studies of southern Australian finfishes[R]. Victoria, Australia: Museum Victoria Science Reports, 2002: 1-65.
- [12] Jackson G D. The use of beaks as tools for biomass estimation in the deepwater squid *Moroteuthis ingens* (Cephalopoda: Onychoteuthidae) in New Zealand waters[J]. Polar Biology, 1995, 15(1): 9-14.
- [13] Fang Z, Xu L L, Chen X J, et al. Beak growth pattern of purpleback flying squid *Sthenoteuthis oualaniensis* in the eastern tropical Pacific equatorial waters[J]. Fisheries Science, 2015, 81(3): 443-452.
- [14] 刘必林,陈新军.印度洋西北海域鸢乌贼角质颚长度 分析[J]. 渔业科学进展, 2010, 31(1): 8-14. Liu B L, Chen X J. Beak length analysis of the purpleback flying squid *Sthenoeuthis oualaniensis* in northwest Indian Ocean[J]. Progress in Fishery Sciences, 2010, 31(1): 8-14(in Chinese).
- [15] 范江涛, 邱永松, 陈作志, 等. 南海鸢乌贼两个群体间 角质颚形态差异分析[J]. 中国海洋大学学报, 2015, 45(10): 42-49.

Fan J T, Qiu Y S, Chen Z Z, *et al.* Morphological difference of the beak between two stocks of *Sthenoteuthis oualaniensis* inhabiting South China Sea[J]. Periodical of Ocean University of China, 2015, 45(10): 42-49(in Chinese).

[16] Lipiński M R, Underhill L G. Sexual maturation in squid: Quantum or continuum?[J]. South African Journal of Marine Science, 1995, 15(1): 207-223.

- [17] 胡贯宇,陈新军,方舟. 个体生长对秘鲁外海茎柔鱼角 质颚形态变化的影响[J]. 水产学报, 2016, 40(1): 36-44.
 Hu G Y, Chen X J, Fang Z. Effect of individual growth on beak morphometry of jumbo flying squid, *Dosidicus gigas* off the Peruvian Exclusive Economic Zone[J].
 Journal of Fisheries of China, 2016, 40(1): 36-44(in Chinese).
- [18] 陆化杰,陈新军,刘必林.个体差异对西南大西洋阿根 廷滑柔鱼角质颚外部形态变化的影响[J].水产学报, 2013, 37(7): 1040-1049.

Lu H J, Chen X J, Liu B L. Effects of individual size on beak morphology of *Illex argentinus* in the southwestern Atlantic Ocean[J]. Journal of Fisheries of China, 2013, 37(7): 1040-1049(in Chinese).

- [19] Ivanovic M L, Brunetti N E. Description of *Illex argentinus* beaks and rostral length relationships with size and weight of squids[J]. Revista de Investigación y Desarrollo Pesquero, 1997, 11: 135-144.
- [20] 刘必林,陈新军. 头足类角质颚的研究进展[J]. 水产学报, 2009, 33(1): 157-164.
 Liu B L, Chen X J. Review on the research development of beaks in cephalopoda[J]. Journal of Fisheries of China, 2009, 33(1): 157-164(in Chinese).
- [21] Wolff G A. Identification and estimation of size from the beaks of 18 species of cephalopods from the pacific ocean[R]. Seattle, Wash., USA: NOAA, 1984: 11-21.
- [22] 方舟,陈新军,陆化杰,等.北太平洋两个柔鱼群体角 质颚形态及生长特征[J]. 生态学报, 2014, 34(19): 5405-5415.

Fang Z, Chen X J, Lu H J, *et al.* Morphology and growth of beaks in two cohorts for neon flying squid (*Ommastrephes bartramii*) in the north Pacific Ocean[J]. Acta Ecologica Sinica, 2014, 34(19): 5405-5415(in Chinese).

- [23] Chen X J, Lu H J, Liu B L, et al. Species identification of Ommastrephes bartramii, Dosidicus gigas, Sthenoteuthis oualaniensis and Illex argentinus (Ommastrephidae) using beak morphological variables[J]. Scientia Marina, 2012, 76(3): 473-481.
- [24] 杨林林,姜亚洲,刘尊雷,等.东海太平洋褶柔鱼角质
 颚的形态学分析[J].中国海洋大学学报,2012,42(10):
 51-57.

Yang L L, Jiang Y Z, Liu Z L, *et al.* Variation analysis on partial morphometric measurements of beak of *Todarodes pacificus* inhabiting East China Sea[J]. Periodical of Ocean University of China, 2012, 42(10): 51-57(in Chinese).

[25] Anderson C I H, Rodhouse P G. Life cycles,

oceanography and variability: ommastrephid squid in variable oceanographic environments[J]. Fisheries Research, 2001, 54(1): 133-143.

 [26] 叶旭昌,陈新军.印度洋西北海域鸢乌贼生物学特性 初步研究[J].上海水产大学学报,2004,13(4):316-322.
 Ye X C, Chen X J. Study of biological characteristics of *Symlectoteuthis oualaniensis* in the northwestern Indian Ocean[J]. Journal of Shanghai Fisheries University, 2004, 13(4): 316-322(in Chinese).

 [27] Jackson G D, McKinnon J F. Beak length analysis of arrow squid *Nototodarus sloanii* (Cephalopoda: Ommastrephidae) in southern New Zealand waters[J].
 Polar Biology, 1996, 16(3): 227-230.

Effects of difference of individual size on beak morphology of *Sthenoteuthis oualaniensis* in the Xisha Islands of South China Sea

CHEN Ziyue¹, LU Huajie^{1,2,3,4,5*}, TONG Yuhe⁶, LIU Wei⁶, ZHANG Xu¹, CHEN Xinjun^{1,2,3,4,5}

(1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
2. National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai 201306, China;
3. Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China;
4. Key Laboratory of Oceanic Fisheries Exploration, Shanghai Ocean University, Ministry of Agricultrue and Rural Affairs, Shanghai 201306, China;
5. Scientific Observing and Experimental Station of Oceanic Fishiery Resources, Shanghai Ocean University, Ministry of Argriculture and Rural Affairs, Shanghai 201306, China;

6. Hainan Academy of Ocean and Fisheries Science, Haikou 570100, China)

Abstract: Beak is an important hard tissue of Cephalopoda which is usually used in the study of fisheries biology such as population identification, growth and stock assessment and so on. Based on the 860 samples of *Sthenoteuthis oualaniensis* collected by light falling-net fishery during May to August in the year of 2017 in the Xisha Islands waters of the South China Sea, the morphologic growth of beak impacted by gonad maturity and individual size was analyzed. The result of principal component analysis of twelve morphologic indices indicated that the upper hood length (UHL), upper crest length (UCL), upper rostrum width (URW), upper lateral wall length (ULWL), lower hood length (LHL), lower crest length (LCL),lower rostrum length (LRL) and the lower lateral wall length (LLWL) could be used to describe the length growth features of beak, and the HL/CL, URW/UCL, LRL/LCL, LWL/CL and WL/CL could be used as the indicators of entire growth of beak. The analysis of variance (ANOVA) and the least-significant difference (LSD) indicated that there were significant differences in the morphologic growth between sexes, gonad maturity and different mantle length, however, the values of HL/CL, URW/UCL, LRL/LCL, LWL/CL and WL/CL were nearly constant with the change of sex, gonad maturity and mantle length. This study suggested that there are significant effects of gonad maturity and individual size on beak morphology and the mantle length of 121mm to 150 mm, and the gonad maturity of III stage seemed to be the inflection points of the morphologic growth of beak of *S. oualaniensis*.

Key words: *Sthenoteuthis oualaniensis*; beak; difference of individual size; morphologic changes; South China Sea; the Xisha Islands waters

Corresponding author: LU Huajie. E-mail: hjlu@shou.edu.cn

Funding projects: National Natural Science Foundation of China (41506184); National Key Technology R & D Program of China(2013BAD13B06); Special Fund for Technical Development of Scientific Research Institutes in Hainan Province (TV45987); Special Fund for Agro-scientific Research in the Public Interest (201403008)